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Abstract

In this paper we develop a new model for stochastic mortality that considers the

possibility of both positive and negative catastrophic mortality shocks. Speci…cally, we
assume that the mortality intensity can be described by an a¢ne function of a …nite

number of latent factors whose dynamics is represented by a¢ne-jump di¤usion processes.
The model is then embedded into an a¢ne-jump framework, widely used in the term

structure literature, in order to derive closed-form solutions for the survival probability.
This framework and model application to the classical Gompertz-Makeham mortality
law provides a theoretical foundation for the pricing and hedging of longevity-linked

derivatives.
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1 Introduction

Longevity risk, i.e., the risk that members of some reference population might live

longer, on average, than anticipated, has recently emerged as one of the largest

sources of risk faced by life insurance companies, pension funds, annuity providers,

life settlement investors and a number of other potential players in the marketplace

for this risk. For instance, given the uncertainty about future developments in

mortality and life expectancy, pension funds and annuity providers run the risk

that the net present value of their pension promises and annuity payments will

turn out to be higher than expected, as they will have to pay out a periodic sum

of income that will last for an uncertain life span.

This risk is ampli…ed by the current problems in state-run pay-as-you-go social

security systems, by the market trend away from de…ned-bene…t corporate pension

schemes towards de…ned-contribution plans and by the increasing instability and

mobility in the labour market that breaks down traditional family networks. In

this environment, individuals will have to become more self-reliant and will wish

to diversify their sources of income in retirement, assigning in particular a greater

weight to private solutions, namely annuities and other more complex longevity-

linked securities.

One of the key conditions for the development of longevity-linked products

and markets and for the hedging of longevity risk is the development of generally

agreed market models for risk measurement. Historically, actuaries have been cal-

culating premiums and mathematical reserves using a deterministic approach, by

considering a deterministic mortality intensity, which is a function of the age only,

extracted from available (static) lifetables and by setting a ‡at (“best estimate”)

interest rate to discount cash ‡ows over time. Since neither the mortality intensity

nor interest rates are actually deterministic, life insurance companies are exposed

to both …nancial and mortality (systematic and unsystematic) risks when pricing

and reserving for any kind of long-term living bene…ts.

In order to protect the company from mortality improvements, actuaries have

di¤erent solutions, among them to resort to projected (dynamic or prospective)

lifetables, i.e., lifetables including a forecast of future trends of mortality instead

of static lifetables. For their construction, a number of di¤erent discrete-time

projection models have been proposed and are actually used in actuarial practice.

Tuljapurkar and Boe (1998), Tabeau (2001), GAD (2001), Pitacco (2004), Wong-

Fupuy and Haberman (2004), Booth (2006) and Bravo (2007) provide a detailed

review of historical patterns in mortality and longevity forecasting models.
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Since the future mortality is actually unknown, there is a likelihood that future

death rates will turn out to be di¤erent from what we’ve projected, and so a

better assessment of mortality and longevity risks would be one that consists of

both a mean estimate and a measure of uncertainty. Such assessment can only be

performed by using stochastic models to describe both demographic and …nancial

risks.

Up to now, a number of di¤erent stochastic mortality models have been pro-

posed (for a detailed classi…cation see, e.g., Cairns et al. (2006a) and Bravo

(2007)). Most of these stochastic mortality models are short rate mortality mod-

els, i.e., they model the spot mortality rate  ()  or the spot force of mortal-

ity  ()  Milevsky and Promislow (2001) were the …rst to propose a stochastic

“hazard rate” or force of mortality. With the intention of pricing guaranteed

annuitization options in variable annuities, the authors demonstrate, …rst in a

discrete-time framework, how to price and hedge a plain vanilla mortality option

using a portfolio composed by zero coupon bonds, insurance contracts and en-

dowment contracts. Moreover, they price the same option in a continuous-time

risk-neutral framework assuming that the dynamics of the short interest rate and

of the mortality intensity evolve independently over time according to a Cox-

Ingersoll-Ross-process and a stochastic mean reverting Brownian Gompertz-type

model, respectively.

Dahl (2004) develops a general stochastic model for the mortality intensity.

The author derives partial di¤erential equations for both the price at which some

insurance contracts should be sold on the …nancial market and for the general mor-

tality derivatives in the presence of stochastic mortality. In addition, he envisages

solutions by which systematic mortality risk can be transferred to the …nancial

market. Dahl and Moller (2005) derive risk-minimizing strategies for insurance

liabilities in a market without derivative securities. Bi¢s and Millossovich (2004)

expand this framework to a bidimensional setting in order to deal e¤ectively with

several sources of risk that simultaneously a¤ect insurance contracts.

In Bi¢s (2005), a¢ne jump-di¤usion processes are used to model both …nan-

cial and demographic factors. Speci…cations of the model with an a¢ne term

structure are employed and closed form mathematical expressions (up to the so-

lutions of standard Riccati ordinary di¤erential equations) are derived for some

classic life insurance contracts. Bi¢s and Denuit (2005) and Bi¢s et al. (2006)

generalize the model proposed by Lee and Carter (1992) to a stochastic setting.

The authors assume that the dynamics of the time-varying parameter  can be

described by stochastic di¤erential equations.
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Most stochastic mortality models presented up to now exhibit three main lim-

itations. First, they are single factor models in that the assume that mortality

shocks afect all ages and cohorts in the same way. Second, they have generally

been implemented for single age cohorts. Third, they underestimate the impor-

tance of jump movements in explaining mortality dynamics over time.

In Schrager (2006) the author …rst addresses these problems by presenting an

a¢ne stochastic mortality model that simultaneously describes the evolution of

mortality for di¤erent age groups as opposed to the previous formulation in which

a single cohort is considered. The author …ts the model to Dutch mortality data

using Kalman …lters and presents alternative valuation approaches for a number

of mortality-contingent contracts.

In this paper we expand the approach proposed by Schrager (2006) by devel-

oping a new model for stochastic mortality that considers the possibility of both

positive and negative catastrophic mortality shocks. Speci…cally, we assume that

the mortality intensity can be described by an a¢ne function of a …nite number

of latent factors whose dynamics is represented by a¢ne-jump di¤usion processes.

The model is then embedded into an a¢ne-jump framework, widely used in the

term structure literature, in order to derive closed-form solutions for the survival

probability. This framework and model application provides a theoretical foun-

dation for the pricing and hedging of longevity-linked derivatives.

The paper is organized as follows. In Section 2 we develop the mathematical

framework for stochastic mortality used throughout the paper. In Section 3 we

illustrate the use of this approach by revisiting the classical Gompertz-Makeham

mortality law. Finally, Section 4 concludes.

2 A¢ne-Jump di¤usion processes for mortality

To model mortality we follow the standard approach and draw a parallel between

insurance contracts and certain credit-sensitive securities and exploit some results

of the intensity-based approach to credit risk modelling. Speci…cally, we use

doubly stochastic processes (also known as Cox processes) in order to model the

random evolution of the stochastic force of mortality of an individual aged  in a

manner that is common in the credit risk literature.

We are given a …ltered probability space (­F FP) and concentrate on an

individual aged  at time 0 Following the pioneering work of Artzner and Delbaen

(1995) in the credit risk literature and the proposals by Dahl (2004) and Bi¢s

(2005) among others in the mortality area, we model his/her random lifetime as
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an F-stopping time  admitting a random intensity  Speci…cally, we consider

 as the …rst jump-time of a nonexplosive F-counting process  recording at

each time  ¸ 0 whether the individual has died ( 6= 0) or survived ( = 0) 

The stopping time  is said to admit an intensity  if the compensator of 

does, i.e., if  is a nonnegative predictable process such that
R 
0 ()  1 for

all  ¸ 0 and such that the compensated process  =
n
 ¡

R 
0 () :  ¸ 0

o

is a local F-martingale. If the stronger condition E
³R 
0 ()

´
 1 is satis…ed,

then  is an F-martingale.

From this, we derive

E (+¢ ¡ j F) = E
µZ +¢


()

¯̄
¯̄ F

¶
 (1)

based on which we can write

 (+¢ ¡ j F) = ()¢ +  (¢)  (2)

an expression comparable with that of the instantaneous probability of death

¢+ derived in the traditional deterministic context.

By further assuming that  is a Cox (or doubly stochastic) process driven by

a sub…ltration G of F with F-predictable intensity  it can be shown, by using

the law of iterated expectations, that the probability of an individual aged  + 

at time  surviving up to time  ¸  on the set f  g  is given by

P (   j F) = E
h
¡

 
 +()

¯̄
¯ F

i
 (3)

Readers who are familiar with mathematical …nance and, in particular, with

the interest rate literature, can without di¢culty observe that the right-hand-side

of equation (3) represents the price at time  of a unitary default-free zero coupon

bond with maturity at time    if the intensity  is to represent the short-term

interest rate.

One of the main advantages of this mathematical framework is that we can

approach the survival probability (3) by using well known a¢ne-jump di¤usion

processes. In particular, an R-valued a¢ne-jump di¤usion process  is an F-

Markov process whose dynamics is given by

 = () + ( ) +
X

=1

  (4)
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where  is a F-standard Brownian motion in R and each component  is

a pure-jump process in R with jump-arrival intensity
©
 () :  ¸ 0

ª
and

time-dependent jump distribution  on R An important requirement of a¢ne

processes is that the drift  :  ! R the instantaneous covariance matrix

T :  ! R£ and the jump-arrival intensity  :  ! R+ must all have an

a¢ne dependency on  . The jump-size distribution is determined by its Laplace

transform.

Following Schrager (2006), we now assume that the mortality intensity for an

individual aged +  at time  + ()  can be expressed in general form by the

following parametric equation

+ () = 0 ( ) +
X

=1

 ( ) ()  (5)

where  :  ! R+ is some real function , possibly dependent on age, and  ()

are multiple latent factors conveying mortality dynamics. Contrary to previous

formulations, we explicitly assume that jumps have a role in explaining mortality

behaviour and assume the multidimensional dynamics of the  latent factors is

given by a¢ne-jump processes with di¤usion equation

 () =  ( ¡ ()) + §
p


P
 +  (0) = ¹ (6)

where P
 is a ¡dimensional Brownian motion,  denotes a jump component,

 and § are  £  matrices,  is a vector of dimension  and  is a diagonal

matrix comprising the di¤usion coe¢cients of the factors on the diagonal. We

further assume that the instantaneous drift, the instantaneous covariance matrix

and the jump-arrival intensity are a¢ne functions of the latent factors. Contrary

to previous formulations, that consider a single age/cohort, equation (5) allows

us to model the intensity + () for all ages simultaneously.

Based on the well know literature on a¢ne term structure models (see, e.g.,

Du¢e e Kan (1996)), we now admit that the survival probability can be rep-

resented by an exponentially a¢ne function of the latent factors. Formally, the

survival probability of an individual aged + in the ( ¡ ) time horizon is given

by

¡+() = E
·
exp

µ
¡

Z 


+ ()

¶¯̄
¯̄ F

¸


From the Feynman-Kac theorem, it follows that ¡+()

=  () is a

solution for the following partial di¤erential equation (simplifying notation from
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() to  and from  () to )




+

¡
00 ¡  0


0¢ 


+

1

2

X

=1

¡
§§

0¢


2



+
X

=1

 ( )

Z

R

[ ( +  ) ¡  ( )] 

 () ¡

£
0 ( + ) +  0

 ( + )
¤
 = 0

where  ( + ) is a vector

 ( + ) = [1 ( + )       ( + )]0  (7)

Note that in  =
P

=1 

 each jump-type  has a distribution function 

at time  dependent only on time  and a jump-arrival
©
 () :  ¸ 0

ª
for

 2 f1    g  with  de…ned by  () = 0 () + 1 () ¢  The jump-size

distribution  of the  jump process is determined by its Laplace Transform

 ( ) =

Z

R
¢ () (8)

de…ned in  2 [01)  2 C and such that the integral is …nite.

Le us now assume that the survival probability ¡+() is represented by

the following exponentially a¢ne function

¡+() = exp fA (  ) + B (   )g  (9)

Substituting in the above equation, we get

2
4 _A + _B0 +

¡
00 ¡  0


0¢ B +

1

2

X

=1

X

=1

©
§

¡
 + 0

¢
§BB

ª
(10)

+
X

=1

³
0 + 1

´ h
 (B) ¡ 1

i
¡ 0 ( + ) ¡  0

 ( + )

#
 = 0

By noting that

X

=1

X

=1

©
§

¡
 + 0

¢
§BB

ª
=

X

=1

8
<
:

¡
 + 0

¢
Ã

X

=1

§B

!0
@

X

=1

§B

1
A

9
=
;

and that
X

=1

§B =
£
§ 0B (   )

¤


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equation (10) can be simpli…ed to

_A + _B0 +
¡
00 ¡  0


0¢B +

1

2

X

=1

n£
§ 0B

¤2


¡
 +  0

¢o
(11)

+
X

=1

³
0 + 1

´ h
 (B) ¡ 1

i
¡ 0 ( + ) ¡  0

 ( + ) = 0

where coe¢cients A ´ A (   ) and B ´ B (   ) are solutions to the follow-

ing system of Riccati ODE

_A = ¡00B ¡ 1

2

X

=1

£
§ 0B

¤2

 ¡

X

=1

0

h
 (B) ¡ 1

i
+ 0 ( + ) (12)

_B = 0B ¡ 1

2

X

=1

£
§ 0B

¤2

 ¡

X

=1

1

h
 (B) ¡ 1

i
+  ( + )  (13)

where _A ´ A
 and _B ´ B

 

The above formulation (5)-(6) of the a¢ne-jump multiple latent factor model

is too general for application purposes. In order to adapt it to an actuarial and

…nancial context, latent factors must have a clear interpretation in explaining

mortality dynamics over time. For that, we revisit in the next section the classi-

cal Gompertz-Makeham mortality law, used normally in a deterministic context

to graduate contemporaneous lifetable experiences. We show that for some para-

metric formulations, closed-form solutions for the survival probability may be

derived.

3 Revisiting the classical Gompertz-Makeham law

To illustrate the use of this approach we revisit as Schrager (2006) the classical

Gompertz-Makeham mortality law. In its original formulation, the law establishes

the following deterministic mathematical relation between age and mortality in-

tensity

+ = 1 + 2
+ (14)

where 1  0 2  0 and   1

Equation (14) recognises that there may other causes of death other than

ageing, an assumption that seems reasonable when we think on the importance

of accidental deaths at younger ages. This law can be …tted into the general

framework (5) by noting that 0 () = 0 1 () = 1 and 2 () = +

Assuming that equation (14) …ts the pattern of mortality for all ages appro-
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priately, changes in the intensity +() can be expressed in terms of variations

of the parameters (latent factors) that represent it. In other words, in this model

the uncertainty is re‡ected by the fact that the future paths of the equation pa-

rameters are actually unknown.

Choosing a particular functional form for the intensity +() involves ob-

viously some risk, namely stochastic process risk. However, in this case we can

somehow measure and control the risk in a systematic way since we can always

select the most appropriate mathematical function, i.e., the one that minimizes

the …tting error.

Assume now that all (or at least some) parameters of equation (14) follow sto-

chastic processes as de…ned by (6). In order to derive analytical solutions for the

survival probability, we …rst con…ne our analysis to gaussian factor dynamics, i.e.,

we consider that factor dynamics is driven by multivariate Ornstein-Uhlenbeck

processes with jumps. Finally, and without lost of generality, we assume that

parameter  is constant over time. The result is the following model

+() = 1() + 2()
+ (15)

where factors  ( = 1 2) have a dynamic behaviour given by the following SDE

() =  ( ¡ ()) + 
P
 +  ()  (0) = ¹ (16)

P
1

P
2 = 

where   0   0  ¸ 0 P
1 and P

2 are correlated Brownian movements

under the real world probability measure.

We assume that () =
P

=1  is a compound Poisson process, independent

of  , with constant jump-arrival intensity  ¸ 0, where f :  = 1    1g are

i.i.d. variables. Following the results by Kou (2002), among others, we consider

jump sizes that are random variables double asymmetric exponentially distributed

with density

 () = 1

µ
1

1

¶

¡ 

1 If¸0g + 2

µ
1

2

¶



2 If0g (17)

where 1 2 ¸ 0 1+2 = 1 represent, respectively, the probabilities of a positive

(with average size 1  0) and negative (with average size 2  0) jump. By

setting 1 = 0 we are interested only on the importance of longevity risk (see, e.g.,

Bi¢s, 2005). By setting  = 0 the model becomes deterministic. When 1 = 2

and 1 = 2 = 1
2 we get the so-called “…rst Laplace law”. Contrary to other
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models, by adopting equation (17) we consider the signi…cance of both positive

mortality shocks (e.g., new medical breakthroughs) and negative mortality shifts

(e.g., bird ‡u).

Let us now assume that the survival probability ¡+() is represented by

an exponentially a¢ne function, i.e.,

¡+() = E
·
exp

µ
¡

Z 



()

¶¯̄
¯̄F

¸
=  ( )

= exp

8
<
:A(   ) +

2X

=1

B(  )

9
=
;  (18)

where  =  ¡ 

It can be shown that the solution to this problem admits the following Feynman-

Kac representation

 ()

8
<
:¡ _A() ¡

2X

=1

_B() +
2X

=1

 [ ¡ ()]B() +
1

2

2X

=1

2B2 ()

+B1()B2()12 +
2X

=1



µ
1

1 ¡ 1B()
+

2
1 + 2B()

¡ 1

¶
¡ (1 + 2

+)

9
=
; = 0

Dividing both sides of this equation by  () we get, after some algebra,

h
¡ _B1() ¡ 1B1() ¡ 1

i
1 +

h
¡ _B2() ¡ 2B2() ¡ +

i
2 ¡ _A()

+
2X

=1

B() +
2X

=1

2
2

B2 () + B1()B2()12

+
2X

=1



µ
1

1 ¡ 1B()
+

2
1 + 2B()

¡ 1

¶
= 0

where A() and B() ( = 1 2) are solutions to the following system of Riccati

ODE

_B1() = ¡1B1() ¡ 1 (19)

_B2() = ¡2B2() ¡ + (20)

_A() =
2X

=1

B() +
2X

=1

2
2

B2 () + B1()B2()12 (21)

2X

=1



µ
1

1 ¡ 1B()
+

2
1 + 2B()

¡ 1

¶

10



with boundary conditions

A(0) = 0 B(0) = 0  = 1 2 (22)

Admit now, without loss of generality, that 12 = 0 (from which 22 = 1), i.e.,

only negative shocks are expected for latent factor 2

Solving equation system (19)-(20)-(21) e (22), we …nally derive closed-form

solutions for A() and B() ( = 1 2)

B1() =
¡1 ¡ 1

1
(23)

B2() = +

Ã
(¡2) ¡ 1

2 ¡ 

!
  = ln  (24)

A() = ¡1 [B1() +  ] +
22
 ¡ 2

£
+ ¡ 2()

¤
(25)

+
21
221

[ + B1()] ¡ 21
41

B21()

+
22

2(+)

2 (2 ¡ )3

·
(2 ¡ )  + 2(¡2) ¡ 1

2
2(¡2) ¡ 3

2

¸

+
12

+

1 (2 ¡ )

(
1 ¡ (¡2¡1)

1 + 2 ¡ 
+ B1() +

B2()

+
+ 

)

+1

½
11 [1 + ln (1 ¡ 11B1())]

1 + 11
+

21 [1 + ln (1 + 21B1())]

1 ¡ 21

¡g + 2

©
22

+ + ln [1 + 22B2()]
ª

2 ¡  ¡ 22+


Model (15)-(16) has some advantages over traditional single factor models

presented so far. First, if we neglect the importance discontinuous and assume

that ¹   the latent factors exhibit an exponentially decreasing trend, a

pattern compatible with decreasing mortality rates observed over time. Second,

…lling the gap in Schrager (2006) the model captures the four types of mortality

risk: random ‡uctuations (volatility risk), longevity risk (trend risk), catastrophic

risk and basis (level) risk. Random ‡uctuations in mortality are captured by

matrix § longevity risk is represented by matrix , catastrophic mortality risk

is captured by the jump component in (16). Finally, basis (adverse selection)

risk can be captured by noting that the model is compatible with a relational

approach of the type suggested by Brass (1971), linking the mortality experience

11



of the general population with that of life insured, for example.

Third, the model resumes the dynamics of mortality for all age groups (co-

horts) throughout human lifespan in a single equation, considering multiple causes

of death and their possible correlations. Finally, and despite its analytical com-

plexity, the model admits closed-form solutions for the survival probability making

it suitable for estimation and pricing applications within the insurance industry.

Recall, however, that by considering gaussian dynamics for the latent factors we

do not run out the possibility of negative mortality rates, a feature well know

within the interest rate literature. As an alternative, non-gaussian speci…cations

for the factor dynamics could involve, for instance, the use of the Feller equation

with jumps

() =  ( ¡ ()) + 

q
()

P
 +  ()  (0) = ¹(26)

P
1

P
2 = 

It can be shown that in this case the solution to this problem admits the

following Feynman-Kac representation

 ()

8
<
:¡ _A() ¡

2X

=1

_B() +
2X

=1

 [ ¡ ()]B() +
1

2

2X

=1

2B2 ()

+B1()1B2()212 +
2X

=1



µ
1

1 ¡ 1B()
+

2
1 + 2B()

¡ 1

¶

¡(1 + 2
+)

ª
= 0

Up until now, there is a lack of empirical evidence supporting the correlation

between Gompertz-Makeham Wiener processes and so, without loss of generality,

we assume that  = 0

Dividing both sides of this equation by  () we get

·
¡ _B1() ¡ 1B1() +

21
2

B21() ¡ 1

¸
1 +

·
¡ _B2() ¡ 2B2() +

22
2

B22( ) ¡ +
¸
2

¡ _A() +
2X

=1

B() +
2X

=1



µ
1

1 ¡ 1B()
+

2
1 + 2B()

¡ 1

¶
= 0

where A() and B() ( = 1 2) are once again solutions of the following system

12



of ODE

_B1() = ¡1B1() +
1

2
21B21() ¡ 1 (27)

_B2() = ¡2B2() +
1

2
22B22() ¡ + (28)

_A() =
2X

=1

B() +
2X

=1



µ
1

1 ¡ 1B()
+

2
1 + 2B()

¡ 1

¶
(29)

with boundary conditions

A(0) = 0 B(0) = 0  = 1 2 (30)

By solving (27)-(28)-(29) e (30), we get a closed-form solution for B1()

B1() =
1 ¡ ¡1

1 + 1
¡1  com

8
><
>:

1 =
p

21 + 221
1 = ¡ (1+1)

2

1 =
(1¡1)

2

(31)

while B2(   ) and A(  ) can only be solved by numerical methods.

4 Conclusion

In this paper we assume that the mortality intensity can be described by an a¢ne

function of a …nite number of latent factors whose dynamics is represented by

a¢ne-jump di¤usion processes. We explicitly assume that jumps have a role in ex-

plaining mortality behaviour. Speci…cally, we consider jump sizes that are random

variables double asymmetric exponentially distributed. The model is compatible

with both negative and positive jumps in mortality, a feature that contrasts with

similar models that are interested in sudden improvements in mortality (e.g., due

to medical advances) only. Model application is illustrated revisiting the classical

Gompertz-Makeham mortality law considering both gaussian and non-gaussian

factor dynamics. In the former case, survival probabilities have been provided in

closed-form.
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