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Forecasting death rates using exogenous determinants 
 

1. Introduction 
 

This paper addresses three research questions: can the factors found in stochastic 

mortality forecasting models be associated with real-world trends in health-related variables; 

does inclusion of health-related factors in models improve forecasts? ; do resulting models give 

better forecasts than existing stochastic mortality models? 

Stochastic mortality models exploit patterns of common variation in deaths data across 

ages over time. We argue in this paper that taking account of real-world trends in the factors 

shown to explain mortality decline such as income, health expenditure and lifestyle leads to 

improved forecasts.  The Lee and Carter (1992) model provided the seminal approach to 

mortality modelling using a principal components analysis of mortality data with one common 

factor. Subsequent innovations include modelling the cohort effect (Renshaw & Haberman, 

2006; Currie, 2006), adding a second period effect (Cairns et al., 2006), using functional 

principal components analysis (Hyndman and Ullah, 2007), adding additional factors for varying 

mortality improvement rates across ages (Plat, 2009). Girosi and King (2008) use Bayesian 

methods to smooth over time, age and country and this approach is extended further by King and 

Soneji (2011) to incorporate lagged exogenous variables in a Bayesian hierarchical model of 

mortality rates. The stochastic mortality model approach, which makes use of the regularities 

found in the age and time profile of mortality data has been the most successful method to date 

but fails to explain the drivers of mortality improvements and assumes that trends seen in the 

past will be continued into the future (Booth and Tickle, 2008). 
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This paper can be divided into three parts. In the first part we use a principal components 

approach to identify the factor structure of the mortality data for the U.S., U.K., Japan, Finland, 

Netherlands and Sweden. The second stage takes the latent factors and explains these factors by 

observed, exogenous factors (GDP, health expenditure, smoking levels, alcohol consumption and 

diet) using appropriate statistical techniques and using stopping rules to prevent the model 

become over-parameterised. Finally, having identified the most appropriate exogenous 

determinants we build the forecasted exogenous variables into a model using the King and Soneji 

(2011) approach.  

There are many possible explanations for recent changes in mortality rates. The health 

production function approach where health is proxied by mortality provides a framework for 

understanding the determinants of mortality. Auster et al. (1969) used the following health 

production model: 

݉ ൌ ܿ  ܼߙ  ߚ ܺ  ܥܪߛ  ܧߜ   ݑ

where ݉ are logged (standardised) mortality rates by US state, ܼ socio-economic status 

(income, education), ܺ lifestyle inputs (alcohol, tobacco), ܥܪ are healthcare inputs (drugs, 

doctors, hospital capital stock), ܧ captures environmental variables (urbanization, 

industrialization) and ݑ is a random element. Higher incomes allow people to spend more on 

health inputs. As average incomes rise, people can purchase more non-healthcare inputs that 

benefit health such as better housing, more nutritious food and gym membership. Where 

healthcare coverage must be privately paid for, higher incomes also allow people to spend more 

on better doctors and better hospital care.1  The choices that individuals make in relation to their 

                                                            
1 Although higher incomes also permit increased consumption of goods injurious to health such as alcohol and tobacco. In addition,  Ruhm 
(2004) argues that there are less motor vehicle accidents and people adopt healthier lifestyles in economic downturns. 
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health also affect mortality. Lifestyle factors such as smoking (Leon, 2011; Thornton et al. 

2002), obesity (Cutler et al., 2009) and alcohol consumption (Miller and Frech, 2000) are all 

recognised as significant risk factors. In studying secular trends in mortality, the role of advances 

in medical technology must be also considered. Cutler and Meara (2004) attributed much of the 

decline in US adult mortality in the second half of the twentieth century to cardiovascular disease 

treatment (new drugs, new surgical procedures and specialised equipment).  Other factors 

considered are economic instability (Bethune, 1997; Iversen et al, 1987), environmental air 

pollution (Schwarz and Dockery, 1992), pharmaceutical expenditure (Miller and Frech, 2000) 

and crime (Thornton et al., 2002).  

The remainder of this paper is laid out as follows. In section 2 we discuss the data that has 

been used in this study. The methodology is discussed in section 3. The results are presented and 

analysed in section 4. Section 5 concludes. 

2. Data 

The mortality data used is taken from the Human Mortality Database collated by the 

Department of Demography at the University of California, Berkeley and the Max Planck 

Institute for Demographic Research in Rostock, Germany.  Death rates, a ratio of the death count 

by single age and year divided by an estimate of the exposure-to-risk in the same interval, for 

males in the US, UK, Japan, Finland, Netherlands and Sweden over the period 1970-2009 were 

selected. This was the largest set of countries possible given the available mortality and health 

data. Models were estimated over the period 1970-2000 and mortality rates for the remaining 9 

years, 2001-2009, were retained for comparison with forecasts. Due to the exponential nature of 

mortality rates we model the logarithmically transformed mortality rates.  
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Data on possible determinants of health were taken from OECD Health data 2009. The 

following candidate variables were chosen: Alcohol consumption (for those aged 15+), Tobacco 

consumption (15+), Total fat intake, Fruit and vegetable consumption, Gross domestic product  

per capita (in 2000 prices) and Total expenditure on health per capita (in 2000 prices).    

Definitions and descriptive statistics are given in Table 1.  GDP and Health expenditure have 

been both logged in the statistical analysis. Other variables were excluded. The obesity time 

series are short and patchy and to some extent this information is captured by the food measures 

included.  Data on pharmaceutical expenditure and medical technology capital stock (CT and 

PET scanners, MRI units, radiation therapy etc) are insufficient and are captured crudely by 

aggregate health expenditure. Air quality emissions data (SOx,NOx and CO)  are inadequate.  

Not all determinants of mortality are contemporaneous. Barker (1992) provided evidence 

that insults to foetal health had life-long consequences based on an analysis of the risk factors for 

cardiovascular diseases found in adults who were born at the time of the WW2 Dutch famine.  

The short time series data considered in our study precludes the inclusion of variables of large 

lag length. Several authors anyhow indicate that these effects may be relatively minor. Murphy 

(2010) argues that exposure to a health shock has two opposing consequences: selection (excess 

mortality in the relevant period perhaps leading to the survival of a more robust cohort than 

average) and scarring (a weakened cohort more susceptible to illness going forward) and that the 

resultant effect is ambiguous. In a study of twins, Herskind et al. (1996) found no evidence that 

family environment had an impact on longevity whereas current environmental influences were 

influential. Similarly, Cutler et al. (2006) indicate cardiovascular risk factors experienced in 

adulthood are much more significant for mortality than early life exposures.  Smoking is 

probably the one exception. Tobacco consumption influences lung cancer through a lifetime’s 
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exposure which requires information on age of initiation and periods of cessation as well as 

historic information on cigarettes per day, tar levels of cigarettes and degree of inhalation 

(Pampel, 2005).  This level of data is unavailable. 

3. Methodology 

3.1 Identifying exogenous factors 

Many of the approaches to mortality modelling used in the demographic and actuarial literatures 

are based on a principal component analysis (PCA) of time series of mortality data by single age.  

The Lee-Carter model is a one–PC model and other multifactorial derivatives of this model add 

further cohort terms or additional factors to capture younger or older age mortality. For example, 

Yang et al. (2010) building on previous PCA studies of mortality (Bell, 1997; Hyndman and 

Ullah, 2007) considers a two-PC model. 

An econometric literature on factor analysis is well-developed.  Factor analysis has been 

used extensively in economic forecasting, modelling business cycles and analysing contagion 

effects of economic crises.  In order to put an economic interpretation on latent factors extracted 

in these cases, Bai and Ng (2006) developed a statistical test for large cross section (N) and large 

time dimension (T) datasets to test the adequacy of observed variables as proxies for the 

unobserved factors.  These tests take into account that latent factors are not known but must be 

estimated. 

Assuming that a set of N age-specific death rates,	݉௫௧	, can be described by a weighted 

linear combination of r (smaller than N) factors, F୲, we can apply Factor Analysis to the datasets. 
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This statistical technique accounts for the maximum amount of data variance with a small 

number of factors while best reproducing the observed correlations between the variables.    

݉௫௧ ൌ λ௫
′ F୲  e୶୲						x ൌ 1,… . N, t ൌ 1,… . . , T   (1) 

In classical factor analysis the error terms e୶୲ are presumed to be independent across x and t.  In 

approximate factor analysis this condition is relaxed.  

Using principal components as estimates for the factors, the matrix of factor estimates 

F෨ ൌ ൫F෨ଵ, … . , F෨൯′ is given by the r eigenvectors associated with the largest eigenvalues of the 

matrix ܯܯ′/ሺܰܶሻ where ܯ is the NxT matrix of age-specific death rates.  The factor loadings 

Λ ൌ ሺλଵ, … . , λሻ′ are given as Λ ൌ  ෨/ܶ. Many of the stopping rules for terminating extractionܨܯ

of principal components were developed in psychometric literature and are not used by 

econometricians as they require the time dimension to be much larger than the number of 

variables (Breitung and Eickmeier, 2006). In order to determine r, we use the stopping rule for 

principal component analysis of the approximate factor model developed by Bai and Ng (2002). 

The number of factors r for which the information criterion is minimised gives the estimated 

number of factors ̂ݎ  .A number of variants of the information criteria are given with the most 

popular statistic being: 

ሻݎሺܥܫ ൌ ሻݎଶሺߪ݈݃  .ݎ
ேା்

ே்
ln	ሾminሺܰ, ܶሻሿ   (2) 

where ߪଶሺ݇ሻ ൌ
ଵ

ே்
∑ ∑ ݁̃௧

ଶ்
௧ୀଵ

ே
ୀଵ  and the tilda(~) indicates estimation by PCA.  

Given a matrix G୲ of m observed variables, we want to know if they are a linear 

combination of the r latent variables F୲. Tests have been developed for testing each variable of 
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G୲	singly and for testing G୲	as a group. Considering the single tests, each variable of G୲ may be 

an exact factor i.e. G୨୲ ൌ δ୨′F୲	∀	t or an approximate factor G୨୲ ൌ δ୨′F୲  ε୨୲	∀	t.  Let δ୨	be the 

least squares estimate of δ୨ . Two tests have been developed for the exact case. Letting  G୨୲ ൌ

δ୨′F෨୲ and ߬௧ሺ݆ሻ ൌ
ୋౠ౪ିୋౠ౪

൫୴ୟ୰ୋౠ౪൯
భ/మ , we count the proportion of the time series for which G୨୲  deviates 

from G୨୲ by more than ߶ఈ, the ߙ percent critical value of the limiting distribution of  ߬௧ሺ݆ሻ.  

This gives the statistic   

ሺ݆ሻܣ ൌ 	 ଵ
்
∑ 1ሺ߬௧ෝ ሺ݆ሻ  ߶ఈሻ்
ଵ    (3) 

We also test how far G୨୲  is from G୨୲ using the statistic   

ሺ݆ሻܯ ൌ 	maxଵஸ௧ஸ்|߬௧ෝ ሺ݆ሻ|   (4) 

This is a more stringent test as it demands that G୨୲ be close to G୨୲ at every point in time. Here, e୧୲ 

must be serially uncorrelated for the limiting distribution of  ߬௧ሺ݆ሻ to be asymptotically normal. 

In the approximate case, we use two goodness of fit statistics: 

(i) the noise to signal ratio 

ܰܵሺ݆ሻ ൌ 		
୴ୟ୰ෞ ሺεොሺ୨ሻሻ

୴ୟ୰ෞ ൫ୋሺ୨ሻ൯
.    (5) 

(ii) the coefficient of determination  

ܴଶሺ݆ሻ ൌ 		
୴ୟ୰ෞ ൫ୋሺ୨ሻ൯

୴ୟ୰ෞ ሺୋሺ୨ሻሻ
.    (6) 
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Testing the group G୲ as a set, the canonical correlations between G୲ and F୲ are considered.  The 

first canonical correlation, ߩଵ, is the largest correlation that can be found for linear combinations 

of G୲ and F୲. The second canonical correlation, ߩଶ,  is the largest correlation that can be found 

from linear combinations of G୲ and F୲ uncorrelated with those giving the first canonical 

correlation, and so on.  Having to estimate F୲ has no effect on the sampling distribution of the 

canonical correlations. For k=1, ...,min[m,r] and  ሺF′୲, G′୲ሻ′  identically independently normally 

distributed, 

ሺߩ
ଶି, ߩ

ଶାሻ ൌ ቀߩ
ଶ െ 2߶ఈ

ఘೖ൫ଵିఘೖ
మ൯

√்
, ߩ

ଶ  2߶ఈ
ఘೖ൫ଵିఘೖ

మ൯

√்
ቁ										 (7) 

where ߩis the kth canonical correlation between G୲ and F෨୲. If all the m variables in G୲ are exact 

factors then the canonical correlations will all be unity. If the m variables are linearly dependent 

then the number of non-zero canonical correlations will be less than m.  Any single variable in G୲ 

may be found to be exact or approximate factors from the single tests but may be a linear 

combination of other observed variables as indicated by the group tests. 

3.2 Forecasting 

Having identified the most appropriate exogenous factors to build into our model of 

mortality we take the models of Girosi and King (2008) and its extension allowing for exogenous 

variables (King and Soneji, 2011) as a starting point to build our covariate-driven model of 

mortality. Girosi and King (2008) developed a method of modelling mortality rates across ages, 

years and countries which uses a Bayesian hierarchical approach to information pooling. Their 

objective in doing this was to make use of beliefs that data across neighbouring ages, years or 

countries should show similar characteristics. For example, we might expect that the mortality 
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rate experienced by a 20 year old in a given year should be similar to that experienced by the 21 

year old or the 19 year old in the same year. Similarly, the mortality rate in say 2000, for a given 

age should be similar to the mortality rate for that same age in 1999 or in 2001. The hierarchical 

approach allows the smoothing of mortality rates for a single country across ages and time and so 

produces realistic forecasts of mortality that do not break norms in terms of age and time going 

forward (for example, mortality rates increasing with age and improving in time). Considering 

the logarithmically transformed mortality rate during year t for life aged x as ݉௫,௧ and a matrix of 

covariates ࢆ	they set out the following model specification: 

  ݉௫,௧~ܰ ൬ߤ௫,௧,
ఙೣమ

ೣ.,
൰ , ݔ ൌ 1,… ,ܰ, ݐ ൌ 1,… , ܶ																	ሺ8ሻ 

௫,௧ߤ ൌ  ௫ߚ࢚,࢞ࢆ

This specification only differs from a standard linear regression model in the ,x tb  weighting that 

is applied to the variance and in the approach to defining the parameters x and 2
x . The 

specification above provides the basic building block of the Bayesian hierarchical approach in 

which the coefficients x  and standard deviations 2
x  are random variables with their own prior 

distributions. The prior for the variance random variable  is denoted ( )P  . The prior on the 

coefficients x  which depends on its own “hyper-parameter”   is denoted ( | )P    is chosen to 

reflect the “similarity” belief across cross sections. This is formalised by introducing a density 

function for the prior defined as: 

ܲሺߠ|ߚሻ ∝ ݔ݁ ൬െ
1
2
,ߚఓሾܪ  ሺ9ሻ		ሿ൰ߠ

where 
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,ߚఓሾܪ ሿߠ ≡
1
2
ݏ,ฮߚ െ ฮఏߚ

ଶ
				ሺ10ሻ 

where the notation ฮߚ െ ฮఏߚ
ଶ

 
denotes a weighted Euclidean norm and where the symmetric 

matrix ݏ	is called the adjacency matrix. Its entries reflect the “proximity” of cross section i to 

cross section j and hence the weight put on the relationship between the coefficients of cross 

section i and cross section j. Using this approach the fitted model shows forecasts that are 

smooth in the age and time dimension and that do not violate the smoothness beliefs across age 

and time that may be violated by using multiple regression methods.  

The method used to develop their model with exogenous covariates was to identify links 

between mortality rates and lagged covariates, specifically smoking habits and obesity. They 

argue against using contemporaneous relationships in favour of lagged relationships and from the 

literature determined the optimal lag period to be 25 years in the case of smoking.  Although it 

may be appropriate to use current data to determine future mortality in the case of smoking rates 

this approach does not facilitate the inclusion of variables which affect mortality 

contemporaneously such as GDP, health expenditure, alcohol consumption or diet. Therefore we 

attempt to forecast these variables here while acknowledging better forecasts could be obtained 

using more adequately specified structural models or more sophisticated statistical techniques. In 

our model we forecast the identified exogenous variables using ARIMA methods. 

Two benchmark models are used to assess the results of our approach. Lee and Carter 

(1992) takes the first principal component,	k୲, of the log-mortality matrix,	݉௫௧, and then uses 

ARIMA time series models to forecast k୲. 

݉௫௧ ൌ ܽ௫  ܾ௫k୲  e୶୲  (11) 
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Hyndman and Ullah (2007) first smooth the data to give a set of curves  ௧݂ሺݔሻ and then 

use functional principal component analysis to decompose ሼ ௧݂ሺݔሻሽ in terms of a set of 

orthonormal basis functions ሼ߮ሺݔሻሽ. Mortality forecasts are then based on forecasts of the 

coefficients ߚ௧multiplied by the basis functions.  

௧݂ሺݔሻ 	ൌ ሻݔሺߤ  ∑ ሻݔ௧߮ሺߚ

ୀଵ  e୲ሺݔሻ  (12) 

The number of basis functions or order, K, is found by minimising squared errors on rolling 

forecasts over the fitting period. This model also includes a bias-adjustment to bring forecasts 

into line with the fitting period data by adjusting forecasts by the difference between the fit and 

the last year of observed data. 

4. Results 

4.1 Identifying exogenous factors 

We first of all try to get a sense of the latent factor structure of the mortality data for 

males in each country over the fitting period 1970-2000.  The number of factors is first 

determined and these factors are analysed to check their association with younger or older age 

mortality variation. 

Applying the stopping rule (equation 2) we find the following factor structure: the 

estimated number of factors is ̂4=ݎ for the US and Japan ;  ̂2=ݎ for the UK, Finland and Sweden ;  

and ̂1=ݎ for the Netherlands. It would appear that for larger countries data are less noisy and the 

multifactor structure of mortality data is more easily identified. A Lee-Carter model with one 

factor or other early derivatives of this model would be therefore inadequate to capture all the 
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common variation in the US and Japanese data while more recent multifactorial models such as 

Plat (2009) or Cairns et al. (2006) would provide a factor structure of a more suitable dimension 

for model fitting. 

Before associating the factors extracted from the data with real-world trends, the 

communality (the percentage of the variation explained) at each age is estimated and graphed in 

figure 1.  In US and Japan male mortality data, the four principal components extracted explain 

almost all the variation in the data at every age. In the other smaller countries, the principal 

components do not explain variation in younger and older age mortality well probably due to 

smaller numbers of deaths at these ages.  

The common factors extracted for each country tend to be associated with particular ages. 

From the rotated factor loadings graphed in figures 2-6, we see that factors are either associated 

with younger or older age mortality (for the Netherlands, ̂1=ݎ and the solution cannot therefore 

be rotated). Male mortality over 45 years of age is explained by US, UK and Finland factor 1, 

while the other factor(s) for these countries explain younger age mortality.  This would indicate 

that we need at least two types of exogenous factors to explain the variation in mortality rates: 

perhaps lifestyle-related factors to explain younger age mortality (e.g. alcohol consumption) and 

factors related to health treatment improvements to explain older age mortality.  Japanese and to 

a lesser extent Swedish mortality rates behave differently with most factors not particularly 

associated with any particular ages.  This would indicate that we require exogenous factors 

associated with mortality improvements at every age (e.g. income) or alternatively a large set of 

exogenous factors which together explain each principal component extracted.   
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The proposed exogenous factors are graphed for each country in figures 7-12. Alcohol 

consumption has peaked and declined in most countries except noticeably the UK where it has 

been progressively rising (figure 7). Smoking has declined everywhere except in Japan (figure 

8). Diets have generally getting worse in Japan with fat intake increasing to Western levels 

(figure 9) and fruit and vegetable consumption declining slightly (figure 10).  In contrast, people 

in the US and UK have been consuming increasing amounts of fruit and vegetables. Improving 

economic growth (figure 11) and steep increases in health expenditure (figure 12) should also 

explain declines in mortality at all ages for most countries. 

Using the statistical tests in (equation 3) and (4), the set of exogenous determinants of 

mortality (the set labelled G୲ in section 3.1) are, in turn, compared to the ̂ݎ principal components 

extracted from the data (the set labelled F୲).  Results for the US are given in Table 2. None of the 

proposed exogenous determinants is an exact factor using the A(j) statistic which should be 5% 

if  factor j is an exact factor.  Alcohol consumption comes closest to being a linear combination 

of the extracted principal components with A(j) = 0.323. The A(j) statistic allows the relationship 

between the exogenous determinants of mortality and the latent factors not to hold at some points 

in time. The M(j) statistic is a stronger test and requires that at every point in time the 

relationship must hold within a small degree of error. Using a 5% significance level with T=50 

the critical value is 3.28.  Not surprisingly the test rejects all of the proposed factors. Bai and Ng 

(2006) note that if anything both tests are underpowered so we can safely conclude that none of 

the proposed factors are exact factors.  Allowing for a close relationship between proposed 

factors and latent factors as opposed to an exact relationship is more realistic where variables are 

measured with error; the statistical indicators do not reflect the underlying construct accurately; 

the relationship might not be exactly linear or the relationship might be moderated by other 
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factors. The goodness of fit statistic (R2(j)) and the noise to signal ratio (NS(j)) indicate how far 

the proxies are from the true factors.  Bai and Ng suggest that if NS(j) > 0.5 and/or R2(j) < 0.95 

then  errors in the linear relationship between the proposed factors and the latent factors are non-

negligible and the proposed factors are not strong proxies for the latent factors. According to 

these measures, Alcohol consumption, Tobacco consumption, Health expenditure per capita and 

GDP per capita are particularly strong proxies.  Of course, numerous studies have found 

cointegration between national income and health expenditure (Freeman, 2003; Westerlund, 

2007; Moscone and Tosetti, 2010) and using the two variables may provide little extra 

information than simply using one.  

The squared canonical correlations, ߩො(k)2, are given in the final column. The first value 

indicates that there is a linear combination of the proposed proxies and a linear combination of 

the four latent factors that are highly correlated (ߩො(k)2 = 0.999). The second value indicates that 

there is a second linear combination orthogonal to that already found which is also highly 

correlated with the four latent factors (ߩො(k)2 = 0.951).).  The set of six proposed factors does not 

span the latent factor space as there are only two well-defined relations (subsequent canonical 

correlations have a lower bound close to zero).  The squared canonical correlations between the 

latent factors and a set of just the two variables Alcohol consumption and Health expenditure per 

capita are 0.997 and 0.934 (not in table) suggesting that little is gained by adding the extra four 

variables. The variables Alcohol consumption and Health expenditure per capita therefore 

underlie the two non-zero canonical correlations between latent and observed factors.  For the 

purposes of forecasting, these two variables - one a lifestyle variable and the other a medical care 

variable - appear to be strongly associated with mortality trends and are sufficiently different 

conceptually to provide distinct forecasting power. 
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From the discussion above, the steps to identify which observed factors best explain the 

factor structure of the data can be summarised as: 

 Extract ̂ݎ	latent factors (the set F୲). 

 Determine the number of non-zero squared canonical correlations ߩො(k)2 between 

F୲ and the matrix G୲ of observed variables 

 Find the minimal subset of G୲ which replicates the canonical correlations. Choose 

candidate variables based on the NS(j) < 0.5 and R2(j) > 0.95 criterion where 

possible.  

In the case of Japan (Table 4), almost all the variables except Tobacco consumption and Fruit 

and vegetable consumption are strong proxies for the four latent factors using Bai and Ng’s 

criterion. This finding is in keeping with figure 4 where a more complicated latent factor 

structure was observed. Nevertheless, the set of factors considered does not encompass the latent 

factor structure. There are two well-defined relations between proxies and latent factors with 

canonical correlations approaching unity although the third canonical correlation is also large.  

As health expenditure and GDP cointegrate, the three variables - alcohol consumption, fat intake 

and health expenditure - provide an appropriate basis for forecasting models. This set has 

squared canonical correlations of 0.995, 0.851 and 0.416 with the latent factors which when 

compared to column 6 of Table 4 indicates a little information is lost by focusing on this smaller 

subset.  

The results for the other countries are given in Table 3, 5-7.  For all countries there is 

only one non-zero canonical correlation (the lower bound for the second canonical correlation is 

close to zero).  In each case there is at least one variable with high R2(j) suggesting one variable 
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is sufficient in each case to proxy for the latent factor and other variables add little extra 

information. Variables with highest R2(j) were selected and are emboldened in these tables.  

As a general summary, this analysis would indicate that the factor structure of mortality 

data in these countries is explained first of all by GDP or Health expenditure per capita. These 

factors are generally highly correlated with the factors extracted.  Although GDP and Health care 

expenditure per capita are not good predictors of population health across high-income countries 

as observed by Leon (2011) among others trends in these variables are generally the most closely 

associated with the variation in mortality rates within country over time. Where the factor 

structure of mortality has many factors (the larger countries viz. USA, Japan), the factors 

associated with smoking and drinking explain the additional factors extracted. Fat intake is also 

important in Japan due to changing dietary patterns indicated in figure 9.  The primacy of 

tobacco consumption in the Netherlands male mortality data is unusual although idiosyncratic 

patterns in coronary heart disease mortality in the Netherlands have been observed (Vaartjes et 

al, 2011) and the importance of the pattern of smoking decline in explaining secular trends in the 

life expectancy of Dutch women has been noted (Leon, 2011). 

4.2 Forecasting results 

For the purposes of forecasting these variables, the Schwarz information criterion was 

used to decide between models with various number of auto-regressive (AR) and moving 

average parameters (MA).  As GDP is generally found to be non-stationary (e.g. Westerlund, 

2007), this variable was first-differenced and consequently health expenditure per capita also. 

Assessing prediction errors post-hoc, these models did not necessarily provide the best forecasts 

but reflect the level of uncertainty encountered in practice. This approach is not dissimilar to 
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forecasting the common factor with ARIMA in Lee and Carter (1992) and making mortality 

forecasts conditional on these forecasts. 

Taking the predicted exogenous factors in the analysis above we apply the King and 

Soneji (2011) approach to forecast mortality rates using the YourCast software2. We present the 

fitting and forecasting results of our model in tables 8-10. We also present results using the 

models of Lee Carter (1992), Hyndman and Ullah (2007) and the King and Soneji model with no 

exogenous variables (Girosi and King, 2008) for comparison. For a given mortality rate at time t 

and for age x (݉௫,௧), we measure the fitting and forecasting quality using the root mean square 

error (RMS) 

ܵܯܴ ൌ ඨ
1

ሺ ଵܺ െ ܺଶ  1ሻܶ
  ൫݀݁ݐ݆ܿ݁ݎ	݉௫,௧ െ ௫,௧൯݉	݈ܽݑݐܿܽ

ଶ்

௧ୀଵ

మ

௫ୀభ
ሺ13ሻ 

The most important point to note is that using forecast exogenous variables in a structured model 

(row labelled King and Soneji in Table 8) improves forecasts compared to the model without 

these variables (labelled Girosi and King) in all countries except the UK. For Finnish mortality, 

the RMS is approximately one-third of the value after inclusion of health-related variables while 

for Japan and Sweden it is approximately halved.  The degree of improvement appears unrelated 

to the number of exogenous variables added. When compared to the Lee Carter and Hyndman 

Ullah models, the model containing information on the determinants of health surpasses the 

benchmark models for Japan, Finland and the Netherlands whereas for US data the King and 

Soneji model outperforms the Hyndman Ullah model and gives results only marginally worse 

                                                            
2 For more details on the YourCast software used in this study and developed by King and Soneji go to 
http://www.gking.harvard.edu/yourcast. 
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than Lee Carter. This result is encouraging bearing in mind the simplicity of the included 

variables which vary in the time dimension but not across the age dimension.  

Results for the one-year ahead forecast and the nine-year forecast only are given in Table 

9.  Results when the exogenous variables are added are better than the statistical Girosi and King 

model for the one-step ahead forecast for almost every country (practically the same for Japan). 

The picture is not as clear for the end of the forecasting period where adding the variables is seen 

to decrease the RMS in only three out of the six countries (Japan, Finland and Sweden). There is 

no clear best approach for the short-run forecast where Lee Carter and King and Soneji are best 

each for two countries. For the longer run forecasts the Bayesian hierarchical models are best 

with the Girosi and King version (i.e. without the exogenous variables) having the lowest RMS 

for three countries and King and Soneji best for two countries. 

The actual and forecast age-specific mortality rates for 2009 are plotted in figures 13-18 

for the King and Soneji model. Forecasts are very accurate for Japan at most ages except for 

young adults. For all other countries, improvements in old-age mortality are typically 

underpredicted whereas the opposite is the case for younger ages. This would indicate that the 

general level has been predicted correctly by using exogenous variables reflecting the general 

trend but age-specific exogenous variables should be used to provide greater accuracy at younger 

and older ages. Mortality rates for younger ages in the smaller countries fluctuate significantly 

over time making accurate forecasting prone to error for all models. The default parameters used 

in the Bayesian hierarchical models to smooth such irregularities could therefore be reduced to 

produce more reasonable forecasts for noisier data.  
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4.3 Fitting results 

Root mean square errors for the fitting results are given in Table 10.  Adding exogenous 

variables improves the fit of the Bayesian hierarchical models comparing King and Soneji results 

with Girosi and King. That the fit improves with more variables is of course not surprising 

although RMS is reduced substantially even when one variable is added. RMS is reduced by 

two-thirds for the US (two exogenous variables added) which is comparable to the reduction for 

the Netherlands and Sweden (one variable added). The King and Soneji model provides the best 

fit for the US and Japan with RMS figures elsewhere comparable to the benchmark models. The 

Hyndman Ullah model gives the best fit where a large number of basis functions are fitted to the 

data (see footnote to Table 8 – UK order = 3, Finland 6, Netherlands 7).  

In figures 13-18, fitted results are also given by age for 1970 for the King and Soneji 

model. The fit across ages is generally very close except where there are smaller numbers of 

deaths i.e. in smaller countries at younger ages (figures 16-18 males aged 20-40).  

5. Conclusion 

 

In this paper, we have identified the statistical factors used in conventional mortality forecasting 

models with exogenous factors deemed plausible by health economics and epidemiological 

literature. The incorporation of the identified exogenous factors into mortality models improves 

forecasts and gives results comparable or better than conventional models. Although this was 

done in a simple way the potential for improving forecasting by using an explanatory-based 

approach in contrast to conventional extrapolative models has been demonstrated. 
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The factor structure is easy to identify for larger countries where common variation at all 

ages can be identified. For smaller countries there are less factors identified and common 

variation at younger and older ages is less well described. Regardless of country size, the 

variable that best describes the factor structure is generally either income per capita or health 

expenditure per capita.  Variables related to smoking and drinking behaviour are next most 

important. Only for Japanese mortality data were changing patterns in diet closely related to the 

factors extracted.  

The exogenous determinants of health related to the latent factor structure were then 

added to the Girosi and King Bayesian hierarchical model and were seen to improve forecasts in 

almost all countries. Even though these variables reflected general trends and were not age-

specific, forecast results for this model were best in 3 out of the 6 countries studied. An analysis 

of forecast errors by age would indicate that age-specific variables would improve forecasts by 

correcting for an underestimation of mortality decline at old ages and overestimation of young 

adult mortality.   

Further work could also consider the inclusion of lagged variables where appropriate. 

There are other approaches which would also permit a more-explanatory based approach. For 

example, the application of the semi-parametric estimation approach of Connor et al. (2011) in 

this context would allow us to unite the identification of exogenous variables and the estimation 

of the latent factor model in one step.   
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Tables 

Table 1: Descriptive statistics, 1970-2000 :  Mean (standard deviation) 

Exogenous factor US UK Japan Finland Netherlands Sweden 
Alcohol  
-Annual consumption of pure alcohol in litres, per 
person, aged 15 years and over 

9.5 
(0.8) 
 

9.3 
(0.7) 
 

7.8 
(1.0) 
 

8.2 
(0.8) 
 

10.5 
(1.1) 
 

6.6 
(0.5) 

Tobacco 
 -Annual consumption of tobacco items (e.g. cigarettes, 
cigars) in grams per person aged 15 years and over 

2645 
(675) 

 

2349 
(511) 

 

3227 
(164) 

 

1410 
(242) 

 

2368 
(713) 

 

1899 
(205) 

Fat  
-Total fat  (grams per capita per day) 

133.5 
(10.1) 

 

138.9 
(3.1) 
 

73.1 
(9.4) 
 

128.0 
(3.7) 
 

121.6 
(5.8) 
 

122.9 
(4.6) 

Fruit & Veg  
- All fruit and vegetable consumption (except wine) in 
kilos per capita 

219.7 
(18.6) 

 

151.8 
(14.3) 

 

173.1 
(8.7) 
 

119.3 
(22.3) 

 

204.0 
(50.0) 

 

141.4 
(16.2) 

GDP 
 -Gross domestic product per capita in national currency 
units at 2000 price levels 

25420 
(4712) 

 

11896 
(2275) 

 

2,994,819 
(707,685) 

 

18325 
(3520) 

25337 
(2157) 

194137 
(27,101) 

Health exp - 
Total health expenditure (private and public) per capita 
in national currency units at 2000 price levels  

2787 
(1098) 

 

712 
(222) 

 

191,957 
(63,732) 

1299 
(372) 

1633 
(324) 

15870 
(2693) 

 

Table 2: Testing the factors in US age-specific mortality rates by single age 20-89, 1970-2000 

G A(j) M(j) R2(j) NS(j) ߩො(k)2 

۵, Alcohol 0.323  5.94  0.976 (0.960, 0.993)  0.024  0.999 (0.998, 1.000) 

۵, Tobacco 0.710  7.53  0.991 (0.984, 0.997)  0.009  0.951 (0.918, 0.985) 

Gଷ,	 Fat 0.806  25.82 0.911 (0.850, 0.971) 0.098  0.366 (0.096, 0.636) 

Gସ, Fruit & Veg 0.935  44.99  0.878 (0.798, 0.959)  0.139  0.130 (‐0.091, 0.352) 

Gହ, GDP 0.806  14.56  0.975 (0.958, 0.992)  0.025  - 

۵, Health exp 0.419  5.20  0.997 (0.994, 0.999)  0.003  - 
A(j) is the frequency that |࣎ො࢚ሺሻ| exceeds the 5% asymptotic critical value. M(j) is the value of the test. R2 is defined in 6, NS(j) 
defined in 5 and ࣋ෝ (k)2   is the vector of canonical correlations Gt with respect to Ft. 

Table 3: Testing the factors in UK male age-specific mortality rates by single age 20-89, 1970-2000 

G A(j) M(j) R2(j) NS(j) ߩො(k)2 

Gଵ, Alcohol 0.839  49.14 0.546 (0.310, 0.782) 0.832  0.991 (0.987, 0.997)

Gଶ, Tobacco 0.871  24.62  0.809 (0.688, 0.930)  0.236  0.323 (0.052, 0.594) 

Gଷ,	 Fat 0.645  26.43  0.313 (0.042, 0.584)  2.195  ‐ 

Gସ, Fruit & Veg 0.871  28.02  0.815 (0.698, 0.933)  0.227  - 

۵, GDP 0.645  10.43  0.967 (0.944, 0.990)  0.035  - 

G, Health exp 0.484  14.80  0.970 (0.949, 0.991)  0.031  - 
A(j) is the frequency that |࣎ො࢚ሺሻ| exceeds the 5% asymptotic critical value. M(j) is the value of the test. R2 is defined in 6, NS(j) 
defined in 5 and ࣋ෝ (k)2   is the vector of canonical correlations Gt with respect to Ft. 
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Table 4: Testing the factors in Japan age-specific mortality rates by single age 20-89, 1970-2000 

G A(j) M(j) R2(j) NS(j) ߩො(k)2 

۵, Alcohol 0.484  9.494  0.978 (0.962, 0.993)  0.023  0.995 (0.992, 0.999) 

Gଶ, Tobacco 0.484  6.893  0.804 (0.680, 0.928)  0.244  0.938 (0.895, 0.980) 

۵,	 Fat 0.581  8.961  0.992 (0.986, 0.998)  0.008  0.786 (0.652, 0.919) 

Gସ, Fruit & Veg 0.839  39.868  0.795 (0.666, 0.924)  0.258  0.310 (0.039, 0.580) 

Gହ, GDP 0.484  8.338  0.993 (0.988, 0.998)  0.007  - 

۵, Health exp 0.548  7.130  0.992 (0.987, 0.998)  0.008  - 
A(j) is the frequency that |࣎ො࢚ሺሻ| exceeds the 5% asymptotic critical value. M(j) is the value of the test. R2 is defined in 6, NS(j) 
defined in 5 and ࣋ෝ (k)2   is the vector of canonical correlations Gt with respect to Ft. 

Table 5: Testing the factors in Finland age-specific mortality rates by single age 20-89, 1970-2000 

G A(j) M(j) R2(j) NS(j) ߩො(k)2 

Gଵ, Alcohol 0.774  22.746  0.433 (0.170, 0.696)  1.311  0.979 (0.964, 0.993) 

Gଶ, Tobacco 0.839  11.285  0.897 (0.829, 0.966)  0.114  0.135 (‐0.089, 0.359) 

Gଷ,	 Fat 0.903  25.608  0.137 (‐0.088, 0.361)  6.319  - 

Gସ, Fruit & Veg 0.871  19.263  0.792 (0.662, 0.922)  0.262  - 

۵, GDP 0.548  10.386  0.904 (0.839, 0.968)  0.107  - 

G, Health exp 0.710  7.314  0.900 (0.834, 0.967)  0.111  - 
A(j) is the frequency that |࣎ො࢚ሺሻ| exceeds the 5% asymptotic critical value. M(j) is the value of the test. R2 is defined in 6, NS(j) 
defined in 5 and ࣋ෝ (k)2   is the vector of canonical correlations Gt with respect to Ft. 

Table 6: Testing the factors in Netherlands age-specific mortality rates by single age 20-89, 1970-2000 

G A(j) M(j) R2(j) NS(j) ߩො(k)2 

Gଵ, Alcohol 0.871  42.800  0.568 (0.339, 0.797)  0.761  0.945 (0.907, 0.983) 

۵, Tobacco 0.806  9.667  0.882 (0.804, 0.960)  0.134  - 

Gଷ,	 Fat 0.839  79.899  0.237 (‐0.025, 0.498) 3.225  - 

Gସ, Fruit & Veg 0.742  30.208  0.699 (0.522, 0.876)  0.431  - 

Gହ, GDP 0.774  15.855  0.796 (0.668, 0.924)  0.256  - 

G, Health exp 0.774  20.155  0.812 (0.693, 0.931)  0.232  - 
A(j) is the frequency that |࣎ො࢚ሺሻ| exceeds the 5% asymptotic critical value. M(j) is the value of the test. R2 is defined in 6, NS(j) 
defined in 5 and ࣋ෝ (k)2   is the vector of canonical correlations Gt with respect to Ft. 

Table 7: Testing the factors in Sweden  age-specific mortality rates by single age 20-89, 1970-2000 

G A(j) M(j) R2(j) NS(j) ߩො(k)2 

Gଵ, Alcohol 0.742  43.455  0.602 (0.384, 0.819)  0.662  0.953 (0.920, 0.985) 

Gଶ, Tobacco 0.839  24.029  0.766 (0.622, 0.910)  0.306  0.340 (0.069, 0.611) 

Gଷ,	 Fat 0.903  11.160  0.569 (0.340, 0.798)  0.759  - 

Gସ, Fruit & Veg 0.710  19.601  0.822 (0.709, 0.936)  0.216  - 

۵, GDP 0.710  17.009  0.856 (0.762, 0.950)  0.169  - 

G, Health exp 0.903  46.286  0.608 (0.393, 0.823)  0.645  - 
A(j) is the frequency that |࣎ො࢚ሺሻ| exceeds the 5% asymptotic critical value. M(j) is the value of the test. R2 is defined in 6, NS(j) 
defined in 5 and ࣋ෝ (k)2   is the vector of canonical correlations Gt with respect to Ft. 

 

 



23 
 

Table 8: Root mean square error for forecasting results, 2001-2009 

  US UK Japan Finland Netherlands Sweden 

Lee Carter 
0.0043  0.0051  0.0022 0.0056 0.0079 0.0028 

Hyndman Ullah 
0.0046  0.0058  0.0033 0.0076 0.0087 0.0025 

Girosi and King 
0.0053  0.0044  0.0023 0.0140 0.0087 0.0093 

King and Soneji 
0.0044  0.0077  0.0014 0.0053 0.0075 0.0044 

Lowest RMSE for each column is emboldened. The order (K in equation 12) for Hyndman Ullah models are US 1, UK 3, Japan 
1, Finland 6, Netherlands 7, Sweden 2. All forecasts for Hyndman Ullah are bias-adjusted. The smoothness parameters for the 
prior distributions in the Bayesian hierarchical models were σa= σt =0.30 and σat =0.20 across all countries. 
 

Table 9: Root mean square error for forecasting results, 2001 and 2009 

   US UK Japan Finland Netherlands Sweden 

   2001  2009 2001  2009 2001 2009 2001 2009 2001  2009 2001 2009 

Lee 
Carter 

     
0.0011  

     
0.0071  

     
0.0029  

     
0.0058  

     
0.0036 

     
0.0011 

     
0.0028 

     
0.0057 

     
0.0030  

             
0.0125  

             
0.0018 

     
0.0038 

Hyndman 
Ullah 

     
0.0009  

     
0.0076  

     
0.0023  

     
0.0071  

     
0.0020 

     
0.0045 

     
0.0045 

     
0.0076 

     
0.0031 

             
0.0135  

             
0.0025 

     
0.0030 

Girosi 
and King 

     
0.0064  

     
0.0037  

     
0.0039  

     
0.0052  

     
0.0016 

     
0.0028 

     
0.0150 

     
0.0155 

     
0.0096  

             
0.0061  

             
0.0083 

     
0.0093 

King and 
Soneji 

     
0.0008  

     
0.0073  

     
0.0038  

     
0.0091  

     
0.0016 

     
0.0009 

     
0.0027 

     
0.0053 

     
0.0032  

             
0.0116  

             
0.0035 

     
0.0059 

Lowest RMSE for each column is emboldened 

 

Table 10: Root mean square error for fitting results, 1970-2000 

  US UK Japan Finland Netherlands Sweden 

Lee Carter 
0.0014  0.0017  0.0022  0.0051  0.0026  0.0020 

Hyndman Ullah 
0.0014  0.0016  0.0024  0.0040  0.0019  0.0021 

Girosi and King 
0.0042  0.0051  0.0029  0.0117  0.0073  0.0077 

King and Soneji 
0.0012  0.0024  0.0017  0.0049  0.0023  0.0026 

Lowest RMSE for each column is emboldened 
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