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Abstract

This paper studies the problem of an insurance company that has to decide
whether to expand her portfolio of policies selling contracts written on a foreign
population. We propose a parsimonious continuous-time model for longevity
risk, that captures the dependence across different ages in two populations and
evaluate the diversification gains due to the international expansion. We present
a calibrated example, based on annuity portfolios of UK and Italian males aged
65-75. The results of our application show that diversification gains, evaluated as
the reduction in the portfolio risk margin following the international expansion,
can be non-negligible, in particular when interest rates are low.
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1 Introduction
In the last twenty years, as a consequence of the deregulation trends in the finan-
cial industries, insurance companies have more and more expanded internationally,
creating operating subsidiaries in different countries or via cross-border mergers and
acquisitions.1 The activities of reinsurance companies, by their own nature, have al-
ways been more geographically diversified than those of insurers (Cummins and Xie
(2008)), because the degree of internationalization of their portfolios can be more
easily disconnected with the geographical localization of their branches. Outreville
(2008) indeed documents the high degree of internationalization of the largest insurers
and reinsurers that in most cases concentrate the bulk of their activities in foreign
countries. However, the extent to which this internationalization trend resulted in
higher industry profitability has been the subject of some recent studies. Outreville
(2012) finds that, in the reinsurance industry, the level of international diversifica-
tion affects performance, but the relationship is non-linear. Empirical evidence on
the life insurance industry Biener et al. (2015) shows that costs of coordination and
organization of complex international structures may offset the potential benefits from
internationalization, resulting in a negative relationship between performance and in-
ternationalization. Nonetheless, Cummins et al. (1999) put forward that geographical
diversification was a primary determinant of mergers and acquisitions in the US insur-
ance industry, as geographically diversified (across U.S. states) firms were more likely
to be the target of acquisitions.

In this paper, on top of these efficiency/performance considerations, we focus on a
potential benefit of internationalization in life insurance, arising from the diversifica-
tion gains stemming from longevity risk pooling across populations. We consider the
situation of an insurer who is facing the choice of expanding her portfolio of liabilities
(for simplicity, an annuity portfolio held by policyholders of different ages) either in
her domestic market or in a foreign one. Analogously, our setting can represent the
problem of a reinsurer whose outstanding contracts are all written on the same un-
derlying population and that has the option to reinsure a portfolio of annuities on the
same or on a different population.

Abstracting from operational expenses, pooling portfolios of policies written on the
lives of different populations of policyholders allows to diversify longevity risks. Even
if the increasing longevity trend is a widespread phenomenon across countries, the
unexpected fluctuations in the mortality rates across countries may be substantially
non-perfectly correlated when analysing general population data. This fact has been
recently deeply investigated in the literature, that has been studying the modeling and
hedging of the basis risk implied in standardized longevity transfer transactions (see
for instance Li and Hardy (2011) or Coughlan et al. (2011)). Up to our knowledge,
such non-perfect correlation in the co-movements of mortality rates has instead been
neglected when considering the effects it can have on the valuation of internationally
diversified liabilities portfolios of life insurers and on the portfolios of contracts of
reinsurers.

Assessing whether these diversifications gains may be sizable is by no means a
trivial task, though. To this end, we indeed first need to model the joint mortality

1In Europe, the creation of a common regulation framework in the middle of the Nineties gave
rise to a wave of international expansions and M& A operations.
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dynamics of the policyholders of the domestic and of the foreign market. We consider
policyholders who are heterogeneous by cohort and select a parsimonious model, that
extends the longevity basis risk model in De Rosa et al. (2016). The model fits well
the observed mortality rates and is able to capture the imperfect correlations observed
between the rates across ages and populations. We apply such model to estimate the
joint dynamics of the mortality rates of UK and Italian males aged between 65 and 75.
Based on the level of co-movement between the rates of the two populations, which
is captured by a single parameter in our model, we define a similarity/diversification
index between two annuity portfolios written on two different populations. This index
measures the degree of diversification that is possibly reached and is increasing in
the potential diversification gains obtained by merging the two portfolios. We then
compare the values of the portfolio of the insurer/reinsurer in the two cases of domestic
and international expansion. Reminiscent of the Solvency II regulation framework, we
define such values as the sum of the actuarially fair values of the liabilities and a
risk margin, computed as a value-at-risk (VaR)-based loading. The value difference
between the two alternatives provides us with a measure of the diversification benefits.
Our application, that considers the choice of a UK-based annuity provider, shows that
the risk margin can reduce up to 2% as a proportion of the actuarial value, in the case
of a foreign expansion to Italy. Also, longevity risk mitigation effects are shown to be
more sizable when the interest rate is lower.

The paper unfolds as follows. Section 2 describes the problem of the insurer and
the value of its portfolio in the alternative cases in which he expands domestically vs.
internationally. Section 3 presents the mortality model and our diversification index
measure. Section 4 provides a calibrated application, describing our model calibration
procedure, which is based on RMSE minimization and Gaussian mapping, and the
results of our analysis. Section 5 concludes.

2 The Insurer’s Problem
We consider an Annuity Provider, or Life-Insurer, based in a generic Country (that
we call Domestic), having a portfolio of deferred annuities written on different cohorts
belonging to the Domestic Population. Let X = {x1, . . . , xm} be the set of annuitants’
ages at time zero, and let ni, for i = 1, . . . ,m, be the number of annuities sold to
people aged xi. We consider a portfolio in which the oldest policyholders are 75:

xi ≤ 75 ∀i = 1, . . . ,m. (1)

When an annuity is sold at time zero, the annuitant pays an initial premium Π0
i (0).

After signing the contract, he will receive a series of fixed annual payments R, starting
from the year-end of his 65-th birthday if xi < 65, or immediately if xi ≥ 65, until his
death, that may happen at most when he reaches a final age ω (for instance ω = 115).
In Europe, the life-insurance business is regulated by the Solvency II regulation, that
requires insurers to value their liabilities at market value and set aside VaR-based
risk margins with respect to both financial and longevity risk. To reproduce such
situation, we assume that the value Π0(t) of the portfolio at time t is the sum of two
components: the Actuarial Value of the contracts of portfolio AVΠ0(t), which is the
sum of the actuarial values of each individual contract Ni(t), and the Risk Margin
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RMΠ0(t) of the portfolio itself, i.e.

Π0(t) = AVΠ0(t) +RMΠ0(t) =
m∑
i=1

niNi(t) +RMΠ0(t). (2)

The portfolio risk margin RMΠ0(t) is defined as the Value-at-Risk, at a certain
confidence interval α ∈ (0, 1), of the unexpected portfolio’s future actuarial value at a
given time horizon T :

RMΠ0(t) = D(t, t+ T ) · V aRα

(
AVΠ0(t+ T )− Et[AVΠ0(t+ T )]

)
, (3)

= D(t, t+ T ) · inf{l ∈ R+ : P (AVΠ0(t+ T )− Et[AVΠ0(t+ T )] > l) < 1− α}.
(4)

Let us consider an annuity contract sold at time t ≥ 0 to an individual aged xi.
The number of years before the individual reaches age 65 is τ = 65 − xi. If τ ≥ 0,
then the contract is a deferred annuity and its actuarial value is

Ni(t) = D(t, t+ τ)Si(t, t+ τ)

[
R

ω−t−τ∑
u=1

D(t+ τ, t+ τ + u)Si(t+ τ, t+ τ + u)

]
. (5)

If τ < 0, then the individual is already aged at least 65, the contract is an immediate
annuity and its actuarial value is:

Ni(t) = R
ω−t∑
u=1

D(t, t+ u)Si(t, t+ u). (6)

Formula (5) can be used in both cases by using the convention τ = max(65− xi, 0).

2.1 Portfolio Expansion

We consider the case in which the Insurer wants to increase the size of her annuity
portfolio and needs to choose between two possible strategies. The first one is just sell
new contracts to her Domestic population. In this case, we denote with n′i the number
of new contracts sold to people aged xi, with ΠD the portfolio composed of just these
new annuities, and with Π1 the total portfolio of old and new contracts. It is easy to
see that the actuarial value of the new portfolio is

AVΠD(t) =
m∑
i=1

n′iNi(t), (7)

and
AVΠ1(t) = AVΠ0(t) + AVΠD(t). (8)

The value of the total portfolio Π is the sum of the actuarial value of the old
portfolio, the actuarial value of the new portfolio and the risk margin of the total
portfolio:

Π1(t) = AVΠ1(t) +RMΠ1(t) = AVΠ0(t) + AVΠD(t) +RMΠ1(t). (9)
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The second possible strategy is to acquire a new portfolio of annuities ΠF , written on
a foreign population. To compare the two strategies, we simply assume that for each
age xi the number of annuities written on people aged xi in the foreign population is
still n′i. The actuarial value of this portfolio is

AVΠF (t) =
m∑
i=1

n′iN
F
i (t), (10)

and
AVΠ2(t) = AVΠ0(t) + AVΠF (t). (11)

Moreover,

Π2(t) = AVΠ2(t) +RMΠ2(t) = AVΠ0(t) + AVΠF (t) +RMΠ2(t). (12)

Our objective is to compare these two strategies in order to study and quantify the
effects of diversification in annuity portfolios.

3 Longevity Risk Modeling
We now turn to the description of the source of uncertainty that affects the value of the
Insurer’s portfolio: the risk of longevity, i.e. the risk that her policyholders live longer
than expected. We set ourselves in the well-established continuous-time stochastic
mortality setting initiated by Milevsky and Promislow (2001) that models the death
of individuals as a Cox process. The time to death of an individual τxi belonging to
cohort xi is the first jump time of a Poisson process with stochastic intensity. Let us
consider two populations, each containing m different cohorts. The first population is
called the Domestic population and the second one is called the Foreign population. A
given cohort i, with i = 1, . . . ,m, belonging to one of the two populations, is identified
by the (common) initial age xi at time zero. The set X of initial ages is common to
the two populations.

Domestic Population

The mortality intensity of each cohort xi, for i = 1, . . . ,m, belonging to the Domestic
population is denoted with λdxi , or simply λdi , and follows a non-mean reverting CIR
process:

dλdxi(t) = (ai + biλ
d
xi

(t))dt+ σi

√
λdxi(t)dWi(t), (13)

where ai, bi, σi, λdxi(0) ∈ R++ are strictly positive real constants and the Wi’s are
instantaneously correlated standard Brownian Motions, i.e. dWi(t)dWj(t) = ρijdt
with i, j ∈ {1, . . . ,m}. This implies that the mortality intensities of two different
cohorts belonging to the Domestic Population are instantaneously correlated.

Foreign Population

The mortality intensity of cohort xi belonging to the Foreign population is denoted
with λfxi , or simply with λfi , and is given by the convex combination of the mortality
intensity of the corresponding cohort belonging to the Domestic population λdxi and an
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idiosyncratic component λ′ which affects the Foreign population only and that depends
on the initial age xi in a deterministic way, i.e.

λfxi(t) = δiλ
d
xi

(t) + (1− δi)λ′(t;xi), (14)

where

dλ′(t;xi) = (a(xi; a
′) + b(xi; b

′)dλ′(t;xi))dt+ σ(xi;σ
′, γ′)

√
dλ′(t;xi)dW

′(t), (15)

with δi ∈ [0, 1]. The functions a(xi; a
′), b(xi; b′), and σ(xi;σ

′, γ′) are deterministic
functions of the initial age xi and, for every xi with i = 1, . . . , N , they depend on the
parameters a′ > 0, b′ > 0, σ′ > 0 γ′ > 0 respectively. W ′ is a standard Brownian
Motion, that is assumed to be independent of Wi for each i = 1, . . . , N .
Intuitively, the idiosyncratic risk source W ′ is population specific in the sense that it
is common to all the cohorts of the Foreign population. Two remarks are important.

• The idiosyncratic component λ′(t;xi) affects differently each cohort. The dif-
ferent impact on each cohort depends deterministically on their initial age xi
through the functional forms of a(xi; a

′), b(xi; b′), and σ(xi;σ
′, γ′);

• Each cohort xi has, in general, a specific sensitivity to λ′(t;xi), which is given
by the parameter δi.

Thus, the mortality intensities of two different cohorts of the Foreign population are
correlated, because so are the corresponding cohorts of the Domestic population. In
general, the correlation between λfxi and λ

f
xj

is different from the correlation between
λdxi and λ

d
xj

because of the weights δi and δj. Moreover, we also model the non-perfect
correlation between cohorts across the two populations, because of the presence of the
idiosyncratic component λ′ affecting the Foreign population.

The functional forms of a(xi; a
′), b(xi; b′), and σ(xi;σ

′, γ′) should be chosen in order
to capture cohort effects in the Foreign Population. A possible choice is:

a(xi; a
′) = a′xi,

b(xi; b
′) = b′,

σ(xi;σ
′) = σ′eγ

′xi ,

which means that the drift of λ′(t;xi) is linearly increasing with xi and its diffusion co-
efficient is instead exponentially increasing with xi. However, the simplest specification
of the model, which we adopt in our application, is:

a(xi; a
′) = a′,

b(xi; b
′) = b′,

σ(xi;σ
′) = σ′.

3.1 Similarity/Diversification index

Building up on the longevity model described in the previous section, we propose a
synthetic measure to describe the similarity/dissimilarity between the annuity port-
folios written on two populations, that we define as Similarity index. Let ndi be the
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number of annuities written on cohort xi belonging to the domestic population, nfi
the number of annuities written on cohort xi belonging to the foreign population,
ni = ndi + nfi and mf the number of generation in the foreing portfolio with non-zero
nfi . Then the Similarity Index (SI) is equal to:

SI = 1− 1

mf

m∑
i=1

1− ndi + nfi δi
ni

. (16)

If δi = 1 for every i, which means that the two portfolios are written on the same
population, then, obviously, SI = 1. On the other hand, if δi = 0 for every i, and
nfi → ∞ while ndi remains constant, we have that SI → 0. We then define the
Diversification index (DI) as the complement to 1 of the Similarity Index, interpreting
it as a measure of the dissimilarity of the two portfolios. The higher the DI, the higher
the diversification benefit that we should be expecting by coupling two portfolios.

4 Application
In this section, we try to quantify the diversification gains in an annuity portfolio in
which UK is the Domestic country and Italy is the foreign one. We consider portfolios
composed by 11 different cohorts: xi = 65, . . . , 75.

4.1 Mortality intensities estimation

We calibrate the parameters of the mortality model to the generations of UK and
Italian males whose age, at 31/12/2012, is between 64 and 74, that is, the cohorts born
between 1937 and 1947. We use the 1-year×1-year cohort death rates data provided
by the Human Mortality Database. The estimation of the parameters is carried out by
minimizing the RMSE between the empirical and the theoretical survival probabilities
using, for each cohort, the 20 observations from 1993 and 20122.

Table 1. Domestic Population (UK) calibration results.

Age a b σ λ0 RMSE

65 2.7878 · 10−5 0.0723 0.0075 0.0116 0.00035
66 6.5423 · 10−5 0.0652 0.0059 0.0124 0.00028
67 1.8424 · 10−5 0.0740 0.0080 0.0135 0.00035
68 5.3144 · 10−5 0.0685 0.0084 0.0160 0.00043
69 1.2500 · 10−4 0.0589 0.0091 0.0164 0.00039
70 8.4734 · 10−5 0.0646 0.0108 0.0189 0.00056
71 7.1323 · 10−5 0.0667 0.0106 0.0212 0.00038
72 4.1759 · 10−5 0.0688 0.0073 0.0239 0.00040
73 2.2984 · 10−5 0.0689 0.0066 0.0262 0.00063
74 9.6036 · 10−5 0.0663 0.0131 0.0282 0.00040
75 3.3898 · 10−5 0.0684 0.0077 0.0316 0.00049

2These correspond to the last 20 observations for the italian males. However, since the UK dataset
is updated until 31/12/2013, we have excluded the last available observation for the UK cohorts.
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Figure 1. Observed and theoretical survival probabilities. The left panel shows the observed
vs. fitted survival probabilities for the Foreign population, while the right reports the figures
for the Domestic population.

Figure 2. Calibration errors.
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Table 2. Foreign Population (IT) calibration results.

Age a′ b′ σ′ δ RMSE λ′0

65

5.8458 · 10−5 4.2841 · 10−111.1464 · 10−7

0.8071 0.00060 0.0075
66 0.8036 0.00073 0.0127
67 0.9348 0.00031 0.0190
68 0.8074 0.00045 0.0115
69 0.7893 0.00120 0.0163
70 0.8119 0.00053 0.0141
71 0.7903 0.00099 0.0124
72 0.8006 0.00039 0.0092
73 0.8106 0.00064 0.0115
74 0.7622 0.00160 0.0209
75 0.8470 0.00053 0.0182

4.2 Correlation matrix estimation

To be able to estimate the instantaneous correlations implied by our longevity risk
model, we apply the Gaussian Mapping technique, which we describe in the next
section.

4.2.1 Gaussian Mapping

The Gaussian Mapping technique has been used in CDS pricing (see Brigo and Mer-
curio (2001)). It consists in mapping a CIR process into a Vasicek process that is as
close as possible to the original one. While the meaning of close will be explained in
what follows, we clarify that our objective is to use the mapped Vasicek processes to
compute analytically the correlation between λdi and λdj , with i, j = 1, . . . , N .
Starting from the CIR process (13) describing the mortality intensity of cohort xi be-
longing to the domestic population, we consider a Vasicek process driven by the same
Brownian Motion Wi(t), having the same drift and the same initial point:

dλVi (t) = (ai + biλ
V
xi

(t))dt+ σVi dWi(t), λVi (0) = λdxi(0). (17)

The instantaneous volatility coefficient σVi of (17) is then determined by making the
two processes are as close as possible. Here, by close we mean that the two processes
agree on the survival probability for a fixed maturity T :

Sdi (t, T ) = SVi (t, T ;σVi ). (18)

Then, we approximate the correlation between λdi (t) and λdj (t) by the correlation
between λVi (t) and λVj (t):

Corr0(λdi (t), λ
d
j (t)) ≈ Corr0(λVi (t), λVj (t)), (19)

since this last correlation can be computed analytically. A simple application of Itô’s
Lemma allows us to show that the solution to the SDE (17) is given by:

λVi (t) = λVi (0)ebit +
ai
bi

(
1− ebit

)
+ σVi

∫ t

0

ebi(t−s) dWi(s). (20)
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Therefore, we have that:

E0

[
λVi (t)

]
= λVi (0)ebit +

ai
bi

(
1− ebit

)
(21)

V ar0

[
λVi (t)

]
=

(σVi )2

2bi

√
e2bit − 1. (22)

Since λVi (t) − E0

[
λVi (t)

]
= σVi

∫ t
0
ebi(t−s) dWi(s), the covariance between λVi (t) and

λVj (t) is:

Cov0(λVi (t), λVj (t)) = E0

[
σVi σ

V
j

(∫ t

0

ebi(t−s) dWi(s)
)(∫ t

0

ebj(t−s) dWj(s)
)]

= E0

[
σVi σ

V
j ρij

∫ t

0

e(bi+bj)(t−s) ds

]

= σVi σ
V
j ρij

∫ t

0

e(bi+bj)(t−s) ds

=
σVi σ

V
j ρij

bi + bj

(
e(bi+bj)t − 1

)
.

Finally, we have:

Corr0(λVi (t), λVj (t)) =
Cov0(λVi (t), λVj (t))√

V ar0

[
λVi (t)

]
V ar0

[
λVj (t)

]
=

2ρij
bi + bj

· e(bi+bj)t − 1√
(e2bit−1)(e2bjt−1)

bibj

(23)

Thanks to the Gaussian Mapping technique we can also compute the conditional cor-
relation two different generations belonging one to the domestic population and the
other to the foreign one. Assuming 0 ≤ u ≤ t, the conditional correlation between
λdxi(t) and λfxj(t) is given by:

Corru
[
λdxi(t), λ

f
xj

(t)
]

= δj
Covu(λ

d
xi

(t), λdxj(t))√
V aru(λdxi(t)) · V aru(λ

f
xj(t))

, (24)

where Covu(λdxi(t), λ
d
xj

(t)) is computed using the Gaussian mapping technique, and

V aru(λ
f
xj

(t)) = δ2
jV aru(λ

d
xj

(t)) + (1− δj)2V aru(λ
′(t;xj)). (25)

4.2.2 Instantaneous correlation estimates

Using the central mortality rates data available in the UK life tables3, we estimate
the instantaneous correlation ρij between dλi and dλj by inverting the approximated
correlation expression (23). To compute the correlations between our 11 cohorts, we
start from the central mortality rates in 1958 of the people aged between 1 and 11, and

3Source: Human Mortality Database
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we follow the diagonal of the life table until we reach the central mortality rates of the
people aged between 65 and 75 in 2012. The central mortality rates table constructed in
this way has dimensions 55×11 and the estimated correlation coefficients are reported
in table 3. Correlations are closet to 1, but they tend to decrease with the distance
between the initial ages of the two considered cohorts . Table 4 shows the correlations
across the two populations, while figure 3 shows the covariance between them. We
see that the two generations with lower covariance are 66 years old UK males and 66
years old Italian males.

Table 3. Instantaneous correlation matrix UK population. Colored cells highlight the
minimum of each column.

65 66 67 68 69 70 71 72 73 74 75

65 1
66 0.9990 1
67 0.9983 0.9992 1
68 0.9983 0.9988 0.9989 1
69 0.9973 0.9985 0.9988 0.9993 1
70 0.9969 0.9979 0.9983 0.9989 0.9995 1
71 0.9972 0.9977 0.9983 0.9987 0.9988 0.9986 1
72 0.9964 0.9970 0.9977 0.9984 0.9987 0.9986 0.9994 1
73 0.9962 0.9970 0.9976 0.9985 0.9988 0.9989 0.9992 0.9997 1
74 0.9959 0.9967 0.9974 0.9983 0.9989 0.9991 0.9991 0.9995 0.9996 1
75 0.9957 0.9960 0.9964 0.9974 0.9978 0.9981 0.9990 0.9996 0.9994 0.9995 1

Table 4. Correlation between populations. Rows are UK generations, columns are Italian
generations. Colored cells highlight the minimum of each row.

65 66 67 68 69 70 71 72 73 74 75

65 0.9821 0.9815 0.9803 0.9807 0.9803 0.9797 0.9798 0.9790 0.9789 0.9786 0.9785
66 0.9815 0.9830 0.9817 0.9817 0.9820 0.9812 0.9809 0.9800 0.9801 0.9799 0.9793
67 0.9803 0.9817 0.9819 0.9812 0.9817 0.9810 0.9809 0.9802 0.9802 0.9801 0.9795
68 0.9807 0.9817 0.9812 0.9827 0.9826 0.9820 0.9816 0.9813 0.9815 0.9813 0.9805
69 0.9803 0.9820 0.9817 0.9826 0.9839 0.9831 0.9823 0.9822 0.9824 0.9825 0.9814
70 0.9797 0.9812 0.9810 0.9820 0.9831 0.9834 0.9819 0.9819 0.9822 0.9823 0.9815
71 0.9798 0.9809 0.9809 0.9816 0.9823 0.9819 0.9831 0.9825 0.9824 0.9823 0.9823
72 0.9790 0.9800 0.9802 0.9813 0.9822 0.9819 0.9825 0.9830 0.9828 0.9826 0.9827
73 0.9789 0.9801 0.9802 0.9815 0.9824 0.9822 0.9824 0.9828 0.9832 0.9829 0.9826
74 0.9786 0.9799 0.9801 0.9813 0.9825 0.9823 0.9823 0.9826 0.9829 0.9832 0.9827
75 0.9785 0.9793 0.9795 0.9805 0.9814 0.9815 0.9823 0.9827 0.9826 0.9827 0.9833

4.3 Evaluating the diversification gains

In this section, we describe our simulation assumptions and present the evaluation of
the geographical diversification effect. We consider a simulation time horizon of 30
years, a constant interest rate of 2% and we disregard the modelling of interest rate
risk or exchange rates to focus on the impact of longevity risk. This choice is made
to isolate and capture any possible added benefit specifically due to the geographic
diversification of an annuity portfolio. The time horizon at which the Risk Margin is
computed is 15 years. Consistently with the Solvency II regulation, we select a 99.5%
confidence interval when calculating the Risk Margin associated to the portfolio.

Initial Portfolio
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Figure 3. Covariance matrix between Italian and UK generations.

We consider a UK Insurer with an initial portfolio Π0, composed of contracts sold
to males whose age, at 31/12/2012, is between 65 and 75. 100 contracts are sold to
each generation and, therefore, the initial portfolio is composed of 1100 contracts. The
initial Actuarial Value AVΠ0(0) of the portfolio is:

AVΠ0(0) = 1.5288 · 104, (26)

while the Risk Margin computed at time 0 with a time horizon of 15 years and confi-
dence interval α = 99.5% is

RMΠ0(0) = 1.3018 · 103. (27)

Hence, the initial portfolio value is

Π0(0) = AVΠ0(0) +RMΠ0(0) = 1.6590 · 104. (28)

We observe that, in this case, the Risk Margin accounts for 8.52% of the initial portfo-
lio Actuarial Value. The Risk Margin represents the amount of money that the Insurer
needs to set aside in order to ensure its solvency (with a probability of 99.5%) in case
of unexpected increase in longevity over a 15 years period.

Domestic Expansion

With a Domestic Expansion, the Insurer doubles the size of its annuity portfolio,
selling additional policies to her domestic population, i.e. the UK population. The
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new portfolio Π1 is, therefore, composed of 2200 contracts, 200 for each generation.
Hence,

AVΠ1(0) = 3.0576 · 104, (29)
RMΠ1(0) = 2.6036 · 103, (30)

Π1(0) = 3.3179 · 104. (31)

The Risk Margin proportion relative to actuarial value is unaffected by the size of
the portfolio, and still accounts for 8.52% of the Actuarial Value of the Domestically
Expanded portfolio. In this case, we obviously have that the diversification index be-
tween Π0 and Π1 − Π0 is 0, as no diversification gains can be obtained.

Foreign Expansion

In the case of a Foreign Expansion,the Insurer doubles the number of policies in its
annuity portfolio by selling contracts written on policyholders belonging to the For-
eign population, namely the Italian one. The new portfolio Π2 is, therefore, composed
of 1100 contracts sold to the UK population (100 for each generation) and of 1100
contracts sold to the Italian population (100 for each generation). Hence,

AVΠ2(0) = 3.1252 · 104, (32)
RMΠ2(0) = 2.4602 · 103, (33)

Π2(0) = 3.3712 · 104. (34)

In this case, the Risk Margin accounts for 7.87% of the Actuarial Value of the Domes-
tically Expanded portfolio. Now we have that the diversification index between Π0

and Π2 − Π0 is 0.0925. Obviously, the size and the composition of the Foreign Port-
folio affect the diversification gains. We then compute the values and risk margins of
three additional portfolios, obtained by altering the number of policies sold to each
different cohorts in the two populations. Table 5 summarizes the results, reporting
the actuarial values, risk margins and total values of the portfolio. The column %RM
represents the Risk Margin, expressed as a percentage of the Actuarial Value of the
portfolio. Portfolio Π3 is obtained fixing the number of policies sold to each generation
of foreign policyholders as twice the number of policies in the initial domestic portfolio.
Portfolio ΠF is a case exposed only to the foreign population with 100 contracts sold
for each generation, useful for comparison. The portfolio Π1

opt is obtained, like Π1,
selling additional policies to the Domestic population. However, it is obtained by op-
timizing the composition of the added contracts in order to minimize the risk margin,
under the constraint that the number of the new contracts is to be 1100. It can then
be considered as the maximally diversified portfolio, in the absence of geographical
diversification. Its risk margin is 7.53% relative to value and is obtained by adding
1100 annuities sold to the UK 66 years old. Similarly, Π2

opt is obtained by allowing
for geographical diversification and optimizing the composition of the Foreign, Italian
portfolio. The risk margin is 6.89%, obtained by selling the whole 1100 contracts to the
Italian males aged 66. The DI of this last portfolio is the highest among the portfolios
analyzed, 0.1801.
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Table 5. Effects of geographical diversification (r = 2%)

Portfolio AV RM Π %RM DI

Π0 1.5288 · 104 1.3018 · 103 1.6590 · 104 8.52% -
ΠF 1.5964 · 104 1.1584 · 103 1.7123 · 104 7.26% -
Π1 3.0576 · 104 2.6036 · 103 3.3179 · 104 8.52% 0
Π2 3.1252 · 104 2.4602 · 103 3.3712 · 104 7.87% 0.0925
Π3 4.7217 · 104 3.6186 · 103 5.0835 · 104 7.66% 0.1233
Π1
opt 3.29791 · 104 2.1947 · 103 3.5173 · 104 6.65% 0

Π2
opt 3.3447 · 104 2.0621 · 103 3.5509 · 104 6.17% 0.1801

Table 6. Effects of geographical diversification (r = 0%)

Portfolio AV RM Π %RM DI

Π0 1.9097 · 104 2.1318 · 103 2.1228 · 104 11.16% -
ΠF 2.0093 · 104 1.9060 · 103 2.1999 · 104 9.49% -
Π1 3.8193 · 104 4.2636 · 103 4.2457 · 104 11.16% 0
Π2 3.9189 · 104 4.0378 · 103 4.3227 · 104 10.30% 0.0925
Π3 5.9282 · 104 5.9437 · 103 6.5226 · 104 10.03% 0.1233
Π1
opt 4.1675 · 104 3.6480 · 103 4.5323 · 104 8.75% 0

Π2
opt 4.2400 · 104 3.4234 · 103 4.5824 · 104 8.07% 0.1801

For the sake of completeness, Table 6 reports the results under the assumption of
zero interest rate, i.e. r = 0%.

Under this lower interest rate level, the magnitude of longevity risk is more severe,
as expected: the percentage Risk Margins are higher for all portfolios, increasing in
the best-case scenario to 8.07%, up from 6.17%.

5 Conclusions
The life insurance industry and the actuarial literature have recently focused on the
basis risk arising in longevity transfers due to the non-perfect correlations between two
populations. In this paper, we devoted our attention to the other side of the story, that
is the possible benefits in geographically diversified portfolios, due to such non-perfect
correlation between populations. Thus, we considered the problem of an insurer who
has to decide whether to expand his liability portfolio in the country where it is based
and runs its activity or in a foreign country. We pointed out that some diversification
gains may be realized when expanding internationally, due to the mitigation of the
exposure to longevity risk. To discuss whether these gains may be relevant in an annu-
ity portfolio, we first proposed a longevity risk model that, while being parsimonious,
is able to capture the non-perfect correlations among the different cohorts of a single
generation and between the members of two different populations. We computed the
risk margin coherently with the Solvency II internal modelling approach, as a loading
on the actuarial value of the portfolio, computed as a 99.5% VaR of the whole portfo-
lio value. Our application, based on an annuity portfolio written on the UK and the
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Italian populations, shows that a non-negligible reduction of the portfolio risk margins
can be obtained by expanding internationally. Under a 0% interest rate assumption,
we show that an optimally chosen foreign portfolio, on top of the domestic one, can
lower the risk margin by more than 2% as a percentage of the actuarial value of the
portfolio. This example can be considered as a conservative one, since the two male
populations of UK and Italy present rather similar historical mortality dynamics. The
diversification effect is shown to be more relevant, the lower the risk-free interest rate.
Our paper contributes to the literature on the modeling of longevity risk, by proposing
a multi-population model that captures the dependence structure within and across
populations. It contributes to the understanding of longevity risk management, by
pointing out that, although the same increasing longevity trend is common to the
populations of almost every country, geographical diversification may lead to some
benefit. Our model is able to quantify such effects. Finally, even though we framed
our problem as representing the decision of an insurer, analogous consideration can
be made in the case of a reinsurer willing to provide insurance to portfolios of policies
written on different populations. This can have implications for securitization and for
the structuring of longevity derivative products.
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