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Abstract

We calculate, and estimate closed-form expressions for the value of life at gun-

point, i.e. the maximal amount an individual would be willing to pay to avert certain

death, as well as for alternative life valuation (Value of Statistical Life, VSL). Our

estimates show that marginal valuation of life diminishes rapidly in incremental

death risk. Consequently, linear extrapolation under VSL overestimates how much

to pay to avert one’s own death, and confirm that the VSL is best interpreted as

a collective willingness to pay to avert an infinitesimal risk increase, and not as a

value attributed to one’s own life.
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1 Introduction

1.1 Motivation and outline

This paper asks a question most people would rather avoid having to answer: How much

would you value your own life or, equivalently, what is the maximum you would be willing

to pay in order to survive in a credible “your money or your life” threat? We refer to the

corresponding amount as the Gunpoint Value of Life (GPV).

One of course is rarely caught up in a genuine money-or-life situation, and those who

were are often unable or unwilling to share their experience. We therefore employ a

revealed- rather than stated-preference perspective. As the maximal willingness to pay

(WTP) to ward off an unfavorable economic change, the Hicksian Equivalent Variation

(EV, Hicks, 1946) provides a natural theoretical framework to elicit our life vs death

valuation.

Towards that aim, we rely on a dynamic model of health- and financial-related

decisions that we developed elsewhere (Hugonnier et al., 2013). This life cycle frame-

work focuses on endogenously-determined health status affecting labor income as well as

exposure to sickness and death risks, in a setting where agents have strict preference for

life over death. Importantly, it yields closed-form expressions for the choice variables

(health spending, and insurance, consumption, and portfolio), and therefore for the

indirect utility from which the Hicksian EV can be computed. We offer three theoretical

contributions. We first calculate the willingness to pay to avert any exogenous increase

in the probability of dying. The second contribution is the closed-form Gunpoint Value,

i.e. the EV that leaves the agent indifferent between remaining alive and certain death.

Third, we recover a theoretical expression for the Value of a Statistical Life (VSL), a

widely-used life valuation alternative. Finally, we conduct a structural estimation of the

model by resorting to PSID data counterparts to the optimal choice variables. Relying on

these deep parameter estimates, our fourth contribution is thus empirical, and consists

of closed-form estimates of the WTP, the GPV, and the VSL.

Our main theoretical findings are as follows. First, both welfare, as well as the optimal

choice variables are functions of net total wealth, i.e. the sum of financial wealth plus the

economic value of the health capital accumulated by the agent. As for Human Capital

(HK) models, the latter is the net present value of the health-dependent labor income.
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Unlike HK models however, that value is adjusted downwards for morbidity risk exposure,

and for minimal subsistence requirements. Second, exposure to exogenous death risk

affects welfare through the marginal propensity to consume (MPC) only. Its effect on

the latter crucially depends on the elasticity of inter-temporal substitution (EIS). At high

(low) EIS, the agent responds to a shorter horizon by increasing (decreasing) consumption,

and the MPC is unaffected at unit EIS.

Third the willingness to pay to avoid an increase in the exogenous death risk exposure

is a weighted average of net total wealth, and a mortality risk adjustment term capturing

endogenous risk exposure and mortality risk aversion, and whose sign depends on the

EIS. As exogenous death risk exposure increases, the mortality adjustment term loses

relevance, and the WTP converges to the morbidity-adjusted net total wealth.

Fourth the Gunpoint Value is also equal to the latter, and can thus be interpreted

as the limiting WTP as death becomes certain. Assuming perfect financial markets, and

barring any bequest motive, the agent pledges total financial wealth, plus the capitalized

value of any future income streams, net of minimal survival consumption levels in order

to survive. In particular, if we abstract from organ donation, health is non-transferable,

and fully depreciated by death. Agents would therefore compute and be willing to forego

the shadow value of the human capital that they possess in order to survive. Importantly,

this valuation encompasses the value of the fundamental services procured by health: the

capacity to work, to produce future health, its durability, as well as the ability to ward

off sickness risks. Because death is certain in a Gunpoint valuation, elements such as the

endogenous ability to alter exposure, or death risk aversion, or even how death obtains

are irrelevant in computing the maximal willingness to pay to save oneself.

Fifth, the Value of a Statistical Life can be computed in closed-form as the (negative)

of the marginal rate of substitution between exogenous death risk exposure and wealth

or, equivalently, as the slope of a tangent of the WTP calculated at base exposure. We

show it is an increasing function of net total wealth, and of a morbidity adjustment term

whose sign also depends on the EIS. Similarly, the effect of death risk exposure on the

VSL crucially depends on the elasticity of inter-temporal substitution and cannot be

established ex-ante.

Our main empirical results are the following. First our point estimates are realistic,

and indicate that the EIS is larger than one, i.e. the marginal propensity to consume is
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increased in response to higher death risk. Second, the estimated WTP in an increasing,

and strongly concave function of the increment in the exogenous risk of dying. The

limiting value for the WTP – i.e. when death becomes certain – corresponds to the

GPV. Given low observed financial wealth, our calculations reveal that the Gunpoint

Value of Life mainly encompasses human capital, and is 360K $ for an individual in

Good health, and 3rd wealth quintile, and ranges between 88 K$ (Poor health, and 1st

quintile) to more than 729 K$ (Excellent health, and 5th quintile). Our human capital

estimates are somewhat lower than alternative HK estimates due to the morbidity, and

subsistence adjustments. Third, as for the GPV, the Value of a Statistical Life is an

increasing function of health and wealth. The estimated VSL is much higher than the

GPV, corresponding to 7.88 MM$ (Good health, 3rd quintile), and ranging between

2.06 MM$ (Poor health, 1st quintile) and 15.82 MM$ (Excellent health, 5th quintile),

values that are well in line with reduced-form estimates from the empirical VSL literature.

Two main reasons for these wide differences between Gunpoint, and Statistical Life

values can be invoked. First, the WTP was found to be very concave in exogenous death

risk. Consequently, its limiting value is much lower than a slope of a tangent evaluated

at the origin. Put differently, the diminishing marginal utility of life implies that linear

extrapolation under the VSL sharply overstates the limiting valuation corresponding

to the GPV. Second, and more fundamentally, these discrepancies highlight the (well-

recognized) caveat that VSL is best interpreted as a collective value that society is willing

to pay to save one unidentifed life, rather than what a single person would be willing to

pay to save his own. Whereas linear aggregation of small WTP’s to avert infinitesimal

increases in death risks, and equally affecting large populations will lead to large VSL,

the GPV is ultimately limited by the individual capacity to pay, i.e. the value of all

assets, be them human or financial. That private capacity is finite, and much lower than

its collective counterpart.

Given that they yield two such different answers to the common question of how much

is worth a human life, which of the GPV or the VSL should be used? We argue that

both are relevant, although in different settings, i.e. the GPV and VSL are complements,

rather than substitutes. The VSL is more appropriate than the GPV when gauging a

collective WTP for changes in death risks affecting large subsets of the population (e.g.

in public safety decisions). The GPV should be relied upon for gauging a value one would
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ascribe on his own life (e.g. the continuation of life support measures, wrongful death

litigation, or life insurance).

The rest of the paper is organized as follows. After presenting the related literature

in Section 1.2, we reproduce the key elements of the Hugonnier et al. (2013) model in

Section 2 for completeness. The main theoretical contributions regarding the WTP, the

GPV, and VSL are outlined in Section 3. The empirical strategy is discussed in Section 4,

with deep parameters, and values of life estimates being presented in Section 5. A

conclusion in Section 6 reviews the main findings and suggests areas for future extensions.

1.2 Related literature

Evaluating the price of a human life has long been at the forefront of economic research.1

The main methodologies may be classified as Human Capital, and the Value of a Statisti-

cal Life. The HK models evaluate the human capital embodied in the expected discounted

net value of the lifetime labor income flows, and that are foregone upon death.2 Well-

known issues related to this approach include the treatment of non-labor activities, the

appropriate rate of discounting, and the endogeneity of survival probabilities.3

As for HK models, we do calculate the net present value of income streams that are

lost upon death. Unlike HK models however, that value is computed in closed-form,

i.e. accounting for all potential endogeneities linked to the income stream and/or the

rate of discounting. Furthermore, whereas our modeling strategy does allow for labor

income flows, this hypothesis is not restrictive for two reasons. First, by assuming that

labor income is health-dependent, the reduced capacity to work for unhealthy individuals

is implicitly take into account. Since health is an adjustable variable, any endogeneity

of labor income is thus implicitly taken into account. Second, Hugonnier et al. (2013)

show that the base model with health-dependent labor income and health-independent

preferences can be rewritten as an equivalent one with health-independent income, and

direct preference for health. Put differently, our model choice is equivalent to one with

only exogenous income (which could be zero), and where agents directly value better

health in the instantaneous utility function. Finally, the rate of discounting is also

1For example, Landefeld and Seskin (1982) reference human-capital based evaluations of the value of
life dating back to Petty (1691).

2See Jena et al. (2009) for partial- and general-equilibrium HK life values.
3Conley (1976) provides additional discussion of HK approaches while Huggett and Kaplan (2016)

address the discounting issues.
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internally determined, and explicitly incorporates the endogeneity of exposure to death

risk. Put differently, agents fully internalize their adjustable longevity in discounting any

revenue flows.

The VSL alternative relies instead on explicit and implicit evaluations of the Hicksian

WTP for a small reduction in fatality risk which is then linearly extrapolated to obtain

the value of life.4 Explicit VSL uses stated preferences for mortality risk reductions

obtained through surveys or lab experiments, whereas implicit VSL employs a revealed

preference perspective in using decisions and outcomes involving fatality risks to indirectly

elicit the Hicksian compensation.5 Examples of the latter include responses to prices and

fines in the use of life-saving elements such as medical treatment, smoke detectors, speed

limitations or seatbelts regulations. Implicit VSL research also exploits the fatality risk

and wages nexus in labor markets to identify the death-income tradeoff. In particular,

the Hedonic Wage (HW) variant of VSL evaluates the equilibrium willingness to accept

(WTA) compensation in wages for given increases in work dangerousness. Controlling for

job/workers characteristics, the wage elasticity with respect to job fatality risk can easily

be estimated, and again extrapolated linearly to obtain the VSL (e.g. Aldy and Viscusi,

2008).

Ashenfelter (2006) provides a critical assessment of the VSL’s theoretical and empirical

underpinnings. First, the assumed exogeneity of the change in fatality risk can be

problematic. For instance, safer roads will likely result in faster driving, which will

in turn increase the number of fatalities. Second, agency problems might arise and lead

to overvaluation in cost-benefit analysis when the costs of safety measures are borne by

groups other than those who benefit (see also Sunstein, 2013; Hammitt and Treich, 2007,

for agency issues). Third, and related, whose preferences are involved in the risk/income

tradeoff and how well these arbitrage are understood often remains an open question. For

example, high fatality risk employment may attract workers with low risk aversion and/or

high time discount rates; generalizing the wages risk gradient to the entire population

4A canonical example (e.g. Aldy and Viscusi, 2007) has each agent i = 1, 2, . . . , N individually willing
to pay vi(N−1) for a N−1 permanent reduction in fatality risk. Assuming identical, linear preferences,

the value of a statistical life is obtained as
∑N

i=1 v
i(N−1) = Nv(N−1), i.e. the collective willingness

to pay to save one individual. Since that person cannot be identified ex-ante, the WTP thus obtained
corresponds to a statistical, rather than person-specific value of life.

5A special issue directed by Viscusi (2010) reviews recent findings on VSL heterogeneity. A meta
analysis of the revealed-preference VSL is presented in Bellavance et al. (2009). See also Doucouliagos
et al. (2014) for a meta-meta analysis of the stated- and revealed-preferences valuations of life.
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could understate true valuation of life. Moreover, because wages are an equilibrium

object in the HW variant of the VSL, they encompass both labor demand and supply

considerations with respect to mortality risk. Hence, a high death risk gradient in wages

could reflect high employer aversion to the public image costs of employee deaths, as

much as a high aversion of workers to their own death. Finally, as was the case for HK

measures, wages-based estimates relate primarily to workers, and are hardly adaptable

to other non-employed groups, such as young, elders, or the unemployed.

Our approach offers several advantages over standard HK and VSL alternatives to

calculate the value of life. First, by emphasizing the destruction of the human capital

in the willingness to pay to avoid certain death, we bridge a gap between HK and VSL

literature. Unlike HK however, we do not uniquely ascribe the service flows of human

capital to labor revenues, but explicitly calculate other self-insurance services provided by

health. Second, and related, any endogeneity of morbidity and mortality risk exposition

is fully accounted for in the model. Indeed, we explicitly ascribe an increase in fatality

risk to the exogenous component in death intensity; the optimal WTP fully accounts

for possible adjustments to such exogenous increases in death risk via the endogenous

elements to mortality risk.

Third, by focusing on a credible money-or-life threat, the question of whose risks pref-

erences are involved is not an issue in our setup. Furthermore, we rely on a representative

panel (PSID) accounting for wide ranging consumption and health-related decisions to

elicit the WTP measure. Unlike the HW variant of the VSL, our GPV approach neither

involves equilibrium objects such as wages, nor does it apply uniquely to workers to elicit

the WTP. This also means that the GPV reflect the value of life to a representative subset

of those who are primarily concerned, i.e. the holders of the life capital. Finally, unlike

VSL, our Gunpoint Value makes no assumption on how the marginal values corresponding

to increases in fatality risk may be extrapolated to compute the value of life. Rather, our

closed-form expressions allows us to compute the theoretical value agents would pay in a

stand-and-deliver situation, and contrast it with VSL. Indeed, we show that, consistent

with economic intuition, the marginal value ascribed to small increases in death intensity

is positive, but falling in the latter. The direct implication is that linear extrapolation

favored by VSL sharply overestimates the value of one’s own life.
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2 Model

We base our valuation on the theoretical model of Hugonnier et al. (2013). For com-

pleteness, we briefly reproduce its key elements here, and then discuss the corresponding

indirect utility that is relied upon to compute the Hicksian EV.

2.1 The agent’s problem

Hugonnier et al. (2013) consider the problem of an agent whose publicly observable health

capital H follows:

dHt =
[
Iαt H

1−α
t− − δHt−

]
dt− φHt−dQst, H0 > 0, (1)

where investment I ≥ 0 captures health expenditures, the deterministic depreciation

occurs at rate δ whereas sickness is stochastic and entails additional depreciation at rate

φ, upon occurrence of dQst, a Poisson morbidity shock with intensity:

λs(Ht−) = η +
λs0 − η

1 + λs1H
−ξs
t−
∈ [λs0, η], (2)

and Ht− = lims↑tHs is health prior to occurrence of the sickness shock dQst.

The agent’s health is also a determinant of the stochastic age at death Tm, the first

occurrence of a Poisson mortality shock dQmt with intensity:

λm(Ht−) = λm0 + λm1H
−ξm
t− . (3)

Observe that both intensities for morbidity (2) and mortality (3) are strictly positive,

decreasing and convex functions of the health stock. Hence, becoming healthier reduces

exposure to sickness and death shocks, subject to diminishing returns, and lower bounds

in self-insurance λk0 > 0, for k = m, s. The parameters λk1 ≥ 0 control whether or not

mortality and morbidity are endogenous, i.e. whether self-insurance is feasible or not.

The agent’s budget constraint is given as:

dWt = [rWt− + Yt − ct − It] dt+ πtσS [dZt + θdt] + xt [dQst − λs(Ht−)dt] , (4)
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where health-dependent labor income Y is given by:

Yt = Y (Ht−) = y + βHt−, (5)

and is increasing in health to capture revenue losses associated with sickness and/or poor

health. The law of motion (4) defines W as financial wealth, c as consumption, and reveals

that the agent invests a money value π in the risky asset characterized by a standard

Brownian motion Z, and a market price of risk θ = σ−1
S (µ− r). The remaining balance is

invested in the risk-less asset paying net rate r. Actuarially fair health insurance contracts

purchased in quantity x ≥ 0 are priced at the morbidity intensity λs(H), and each pay

one unit of the numeraire for every occurrence of the health shock dQs.

Starting with the seminal papers of Yaari (1965), and Hakansson (1969), standard

time-additive frameworks model utility as the sum of discounted period utilities up to

the random time of death, at which point welfare is normalized to zero. Hugonnier et

al. (2013) retain the latter assumption, but relax time-additivity along the lines of Duffie

and Epstein (1992) and further allow for source-dependent risk aversion. More formally,

subject to the laws of motion (1), and (4), and taking into account the distributional as-

sumptions (2), and (3), the agent selects optimal consumption, portfolio, health insurance

and health investment so as to solve:

V (Wt, Ht) = sup
(c,π,x,I)

Ut,

where the continuation utility Ut is given as:

Ut = 1{Tm>t}Et

∫ Tm

t

(
f(cτ , Uτ−)− γ|στ (U)|2

2Uτ−
−

s∑
k=m

Fk(Uτ−, Hτ−,∆kUτ )

)
dτ

= 1{Tm>t}Ut,

(6)

and where the modified utility Ut solves:

Ut = Et

∫ ∞
t

e−
∫ τ
t νm(Hv)dv

(
f(cτ ,Uτ−)− γ|στ (U)|2

2Uτ−
− Fs(Uτ−, Hτ−,∆s Uτ )

)
dτ. (7)
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The first term in (6), and (7) is the standard Kreps-Porteus aggregator:

f(ct, Ut−) =
ρUt−

1− 1/ε

((
ct − a
Ut−

)1− 1
ε

− 1

)
, (8)

and encodes the generalized recursivity, with a being the survival consumption level, ε

being the elasticity of inter-temporal substitution, and ρ being the subjective discount

rate. The second term captures the Duffie and Epstein (1992, eq. (3), p. (416) penalty

for exposure to the Brownian financial risk in Z, where

σt(U) =
1

dt
d〈U,Z〉t,

is the volatility of the continuation utility induced by financial exposure, and where the

aversion to financial risk is given by γ ≥ 0. The third and fourth terms in (6), and (7)

are given by:

Fk(Ut−, Ht−,∆kUt) = Ut− λk(Ht−)

[
∆kUt
Ut−

+ u(1; γk)− u
(

1 +
∆kUt
Ut−

; γk

)]
, (9)

where the expected jump in utility is:

∆kUt = Et−[Ut − Ut−|dQkt 6= 0],

for k = s,m, and where u(·; γk) is the CRRA function with curvature γk. The functions Fk

in (9) are the Poisson analogs to the Brownian volatility term, and capture the penalties

induced by exposure to the discrete health-related shocks dQk. The parameters γs ≥ 0

and γm ∈ (0, 1) respectively encode aversion with respect to sickness and death risks. As

discussed in Hugonnier et al. (2013, Fig. 2), the penalty functions Fk are positive for all

relative jumps ∆kU/U 6= 0, and are zero otherwise, are increasing in risk aversion γk, and

are asymmetric in that negative jumps are more costly than positive ones.

Finally, the health-dependent endogenous discount factor in (7) is given by:

νm(Ht−, λm0) =
λm(Ht−, λm0)

1− γm
≥ 0, (10)

and highlights the iso-morphism between the agent’s problem with endogenous stochastic

life horizon in (6), and the infinite horizon problem in (7), with endogenous discounting
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at rate νm(Ht−, λm0) in (10). Put differently, an unhealthy agent faces a higher risk of

dying and behaves as though he were more impatient; ceteris paribus higher aversion to

death risk γm further increases discounting.

2.2 Indirect utility and optimal rules

The endogeneity of the discount rate νm(H) in (7) implies that closed-form solutions to

the agent’s problem cannot be computed.6 Instead, Hugonnier et al. (2013) calculate

an approximate solution relying on a Taylor expansion. First, a zero-order solution

is explicitly obtained by imposing λk1 = 0, k = m, s on the parameter controlling

the endogeneity of the morbidity (2) and mortality (3) intensities. Second, a first-

order solution is calculated via an order-1 expansion around the exogenous intensities

benchmark λk1 = 0.

In particular, under the theoretical assumptions in Appendix A, we can let the non-

negative marginal-Q of health B solve g(B) = 0, subject to g′(B) < 0 in:

g(B) = β − (r + δ + φλs0)B − (1− 1/α)(αB)
1

1−α , (11)

and define

K = α1/(1−α)Bα/(1−α). (12)

Moreover, let the non-negative marginal propensity to consume and the marginal value

of net total wealth be defined as:

A(λm0) = ερ+ (1− ε)
(
r − λm0

1− γm
+
θ2

2γ

)
, (13)

Θ(λm0) = ρ

(
A(λm0)

ρ

) 1
1−ε

. (14)

6To facilitate notation, we henceforth suppress time subscripts, i.e. we denote G(W,H) =
G(Wt−, Ht− |Wt− = W,Ht− = H) for any function G.
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Finally, let the non-negative first-order adjustments associated with endogenous morbid-

ity and mortality risks be defined as:

ls =
φ(η − λs0)

r − F (1− ξs)
, (15)

lm(λm0) =
1

(1− γm)[A(λm0)− F (−ξm)]
. (16)

where

F (x) = x(αB)
α

1−α − xδ − λs0χ(−x), (17)

χ(x) = 1− (1− φ)−x. (18)

Given these elements, Hugonnier et al. (2013, Prop. 1, 2, and Thm. 1, 2) show that the

optimal policy can be characterized as follows.

Theorem 1 (Indirect utility and optimal policy) Assume that the regularity con-

ditions (40) in Appendix A are verified. Then, up to a first-order approximation, the

nonnegative indirect utility of an alive agent is:

V (W,H, λm0) = Θ(λm0)
[
N1(W,H)− λm1H

−ξmlm(λm0)N0(W,H)
]
, (19)

and generates the nonnegative optimal consumption

c∗(W,H, λm0) = a+A(λm0)
[
N1(W,H)− (1− ε)λm1H

−ξmlm(λm0)N0(W,H)
]
, (20)

as well as the other optimal policy functions:

π∗(W,H) =(θ/(γσS))N0(W,H)− λs1(θ/(γσS))lsH
−ξsP0(H)

x∗(W,H, λm0) =φP0(H)− λm1χ(ξm)(1− 1/γs)lm(λm0)H−ξmN0(W,H)

− λs1χ(ξs − 1)lsH
−ξsP0(H),

I∗(W,H, λm0) =KP0(H) + λm1(ξmK/(1− α))lm(λm0)H−ξmN0(W,H)

+ λs1((ξs − 1)K/(1− α))lsH
−ξsP0(H),

(21)

where any dependence on the endowed mortality rate λm0 is explicitly stated, and where

the nonnegative order-0 value of human capital and nonnegative orders-0 and 1 of net
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total wealth are defined as:

P0(H) = BH, (22)

N0(W,H) = W + P0(H) +
y − a
r

, (23)

N1(W,H) = N0(W,H)− λs1H−ξslsP0(H). (24)

2.2.1 Financial, human, and total wealth

Both welfare (19), and the optimal rules (20), (21) are functions of the orders-0 and 1

values of the health capital, and of net total wealth. In particular, the order-0 value of

the human capital P0(H) in (22) is added to financial wealth W and to the present value

of base income y, net of subsistence consumption a to yield the order-0 net total wealth

N0(W,H) in (23). When endogenous sickness risk exposure is reintroduced, allowing

for λs1 > 0 mechanically raises the morbidity intensity (2) and reduces the value of the

human capital to P0(H)(1− λs1H−ξsls), and consequently lowers the first-order net total

wealth N1(W,H) in (24).

Two points are worth mentioning. First, Hugonnier et al. (2013, Prop. 2) show that

up to a first-order:

N1(Wt, Ht) = Et

∫ ∞
t

mt,τ (c
∗
τ − a)dτ (25)

where mt,τ is a stochastic discount factor induced by bond, stock, and insurance prices,

and where c∗τ = c∗(Wτ , Hτ , λm0) is the consumption at the optimum in (20). Hence, the

order-1 net total wealth N1(W,H) in (24) captures the net present value of consump-

tion along the optimal path, net of minimal subsistence. Second, observe that neither

P0(H), N0(W,H) nor N1(W,H) are affected by exposure to death risk (λm0, λm1). This

irrelevance stems directly from the solution method where an incomplete markets setup

with finite horizon, and endogenous death risk exposure (6) is equivalently recast as

a complete market one with infinite horizon, and endogenous discounting (7). Under

completeness, the agent can sell a claim to his net labor income stream to recover human

capital, and selects optimal rules subject to health-dependent discounting (see Hugonnier

et al., 2013, for details), i.e. death risk alters optimal choices and welfare, but not the

value of assets, be them human or financial.
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2.2.2 Effects of exogenous death intensity

Next, contrasting welfare V (W,H, λm0) in (19) and consumption c∗(W,H, λm0) in (20)

reveals that the exogenous death intensity λm0 affects the marginal propensity to consume

A(λm0) in (13), through which both the marginal value Θ(λm0) in (14), and the endoge-

nous dealth risk adjustment lm(λm0) in (16) are also affected. In particular the MPC

A(λm0) is increasing in the death intensity λm0 for elastic inter-temporal substitution

(ε > 1), is independent at unit elasticity, and is decreasing for inelastic preferences

(0 < ε < 1).

To understand these conflicting effects of death risk on the MPC, recall from (10)

that an increase in exogenous death risk exposure induces heavier discounting at rate

νm(H,λm0) of future utility flows, and leads to two opposite outcomes on the marginal

propensity to consume. First, more discounting makes future consumption less desirable

and shifts future towards current consumption (i.e. by increasing the MPC); that effect

is dominant at high elasticity of inter-temporal substitution ε > 1. Second, higher

discounting of future consumption requires shifting current towards future consumption

to maintain utility (i.e. by lowering the MPC); that effect is dominant at low elasticity

of inter-temporal substitution ε ∈ (0, 1). Unit elasticity implies exact cancellation of the

two effects and no changes in the MPC.

Moreover, when the EIS is low, declining marginal propensity requires that an upper

bound on death intensity be imposed to maintain non-negative MPC. That upper bound

is given by:

λm0 ≤ λ̄m0 = (1− γm)

[(
ε

1− ε

)
ρ+

(
r +

θ2

2γ

)]
, when ε ∈ (0, 1). (26)

We note that when preferences are inelastic, we haveA(λ̄m0) = 0 implying that c∗(W,H, λ̄m0) =

a in (20), while Θ(λ̄m0) = 0 implies that V (W,H, λ̄m0) = 0 in (19). Put differently, when

the EIS is low, and mortality risk is evaluated at maximal admissible intensity λ̄m0, the

agent consumes minimal subsistence level, and is indifferent between life and death.

Two final elements are worth discussing. First, the net effect of exogenous death risk

on the endogenous death risk adjustment lm(λm0) in (16) is the inverse of that on the

MPC, i.e. lm is decreasing (resp. increasing) at high (resp. low) EIS. Second, whereas a

higher risk of dying can have an increasing or depressing effect on the marginal propensity
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to consume, strict preference for life implies that it always reduces the marginal value

of total wealth Θ(λm0) in (14) regardless of how elastic is inter-temporal substitution.

By non-negativity, it follows that Θ(∞) = V (W,H,∞) = 0, i.e. the agent’s welfare

converges to the indirect utility at death as the latter becomes certain.

To summarize, the exogenous death intensity λm0 conditions welfare and consumption

through the the marginal propensity to consume A(λm0). How the latter is affected

depends on whether preferences are elastic or not with respect to inter-temporal substi-

tution. As we show next, the EIS also is a key determinant for the willingness to pay to

avert death.

3 Willingness to pay, Gunpoint and Statistical values

of life

Relying on the indirect utility function (19), we first compute the Hicksian Equivalent

Variation to avert an arbitrary increase in the exogenous death risk. Under a similar

reasoning, we then evaluate the Gunpoint value of life as the maximal willingness to pay

to avert certain death. Finally, both the indirect utility and the WTP can be relied upon

to calculate the Value of a Statistical Life.

3.1 Willingness to pay to avoid a finite increase in death risk

Consider a permanent change of ∆ ≥ 0 in the exogenous death intensity λ∗m0 = λm0 + ∆.

We resort to standard principles to compute the Hicksian Equivalent Variation (EV)

as the maximum amount v(λ∗m0) ≥ 0 that an individual is willing to pay to avoid the

unfavorable change from λm0 to λ∗m0:

V (W − v(λ∗m0), H, λm0) = V (W,H, λ∗m0) . (27)

We can substitute the indirect utility V (W,H) given by (19) in the implicit EV (27), and

solve for v(λ∗m0) through a first-order approximation as follows:

Theorem 2 (willingness to pay) Assume that the regularity conditions (40) in Ap-

pendix A are verified. Then, up to a first order approximation, the maximal willingness
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to pay to avoid a permanent change ∆ in the exogenous death intensity λm0 is given by:

v(W,H, λ∗m0) =

[
1− Θ∗

Θ

]
N1(W,H) +

Θ∗

Θ
λm1H

−ξm [l∗m − lm]N0(W,H), (28)

and where the order-0 and order-1 values of total wealth N0(W,H), and N1(W,H) are

given in (23), and (24), and where we have set Θ = Θ(λm0), Θ∗ = Θ(λ∗m0) in (14) and

lm = lm(λm0), l∗m = lm(λ∗m0) in (16).

We saw earlier that a change in λm0 affects welfare V (W,H, λm0) through the Θ(λm0),

and the lm(λm0) channels, both of which transit through the MPC, A(λm0). This is

naturally reflected in the WTP (28) via its effects on Θ∗, and l∗m. Second, it was shown

earlier that the marginal value of total wealth Θ(λm0) ≥ 0 in (14) is a decreasing function

∀ε 6= 1. Consequently, the weights Θ∗/Θ ∈ [0, 1], and the WTP v(W,H, λm0) = 0 (i.e.

when ∆ = 0), and is otherwise a weighted average of two components: the first-order net

total wealth N1(W,H), and the change in the endogenous mortality adjustment that is

induced by a change in the endowed intensity λm1H
−ξm [l∗m − lm]N0(W,H). Interestingly,

we saw that unit elasticity cancels out the two conflicting effects on the MPC A(λm0), and

consequently implies that Θ = Θ∗, and lm = l∗m. It follows v(λ∗m0) = 0,∀λ∗m0, i.e. that

the agent is indifferent to an increase in the risk of death, regardless of the magnitude of

the change, and therefore his willingness to pay to avoid it is zero.

Third, since lm is declining in the MPC, we have that l∗m − lm < 0 when ε > 1, i.e.

agents with elastic preferences substitute more consumption when faced with a shorter

horizon, and are therefore willing to pay less to avert it. Finally, the weights Θ∗/Θ are

falling as exogenous death risk λ∗m0 increases. This implies that the elements capturing

attitudes towards mortality risk γm, and the endogeneity of death risk (λm1, ξm) that

are encoded in (Θ∗, l∗m) gradually lose any relevance as the endowed death intensity λ∗m0

becomes large. This is formalized in the following result.

Corollary 1 (limiting WTP) Assume that the regularity conditions (40) in Appendix A

are verified. Then, up to a first order approximation,

1. For high elasticity of inter-temporal substitution ε > 1:

lim
λ∗m0→+∞

v(W,H, λ∗m0) = N1(W,H). (29)
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2. For low elasticity of inter-temporal substitution ε ∈ (0, 1):

v(W,H, λ̄m0) = N1(W,H), (30)

where the order-1 value of total wealth N1(W,H) is given in (24), and where the maximal

admissible death intensity λ̄m0 is given in (26),

Hence, when preferences are sufficiently elastic with respect to inter-temporal substi-

tution (ε > 1), the willingness to pay converges to the morbidity-adjusted net total wealth

N1(W,H) as death becomes certain. It also converges to N1(W,H) when preferences are

inelastic, and the exogenous death risk intensity attains its maximal admissible value

λ̄m0.

For the other cases of finite ∆, the shape of the willingness to pay v(W,H, λ∗m0) in

function of the death risk increment crucially depends on the EIS ε, as well as on the other

parameters, and the health level, and is difficult to establish ex-ante.7 We will instead

perform an empirical evaluation below. As will be seen shortly, the monotone increasing,

and concave WTP function v(W,H, λ∗m0) that is inferred from our estimates has important

implications for the relative magnitude of the Gunpoint versus VSL estimates.

3.2 Gunpoint Value of Life

To calculate the value of life at gunpoint, we again resort to the Hicksian EV, this time

computing the WTP to avert certain, rather than possible death. From preferences (6),

and (7) the utility at death is normalized at zero, such that the gunpoint value vg is

implicitly defined from:

V (W − vg, H, λm0) = 0. (31)

Again relying on the welfare function (19), and resorting to a first-order approximation

reveals the following result.

Theorem 3 (Gunpoint value of life) Assume that the regularity conditions (40) in

Appendix A are verified. Then, up to a first order approximation, the maximum value an

7Rosen (1988) stresses the importance of inter-temporal substitution in valuing longevity. See also
Córdoba and Ripoll (2013) for the importance of the EIS in value of life calculations, as well as Huggett
and Kaplan (2016) for EIS effects on human capital valuation.
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agent is willing to pay to avoid certain death is given by:

vg(W,H) = N1(W,H) (32)

where the order-1 value of total wealth N1(W,H) is given in (24).

Relying on (22), (23), and (24) allows us to re-write the gunpoint value of life (32) as:

vg(W,H) = W +
y − a
r

+ P1(H) (33)

where the first-order value of the human capital is given as:

P1(H) = HB
[
1− λs1lsH−ξs

]
, (34)

= Hp1(H).

In the absence of a bequest motive, and under perfect markets, the agent who is forced

to evaluate life at gunpoint is thus willing to pay his total financial wealth W , plus the

capitalized value of his fixed income endowment y. This total wealth measure has been

used extensively in the HK literature (e.g. Huggett and Kaplan, 2016). However, as (33)

makes clear, it provides an incomplete proxy to the value of a human life.

First, the previous discussion of net total wealth in (25) showed that the minimal

consumption level a is required at all periods for subsistence, and must be deducted

from the Gunpoint value in (33). Second, since human capital is non-transferable, and

is entirely destroyed at death, the agent is also willing to give up the shadow value

of his health capital P1(H), i.e. his stock of current health H, times its shadow price

p1(H). From (34), the latter can be expressed as the health capacity to generate labor

revenues B, adjusted for the endogeneity of the agent’s exposure to health shocks. As

discussed earlier, the health shock intensity (2) is higher for λs1 > 0, i.e. the health stock

is more subject to stochastic depreciation. Consequently, its value must be discounted

accordingly, and is lower than under exogenous exposure to sickness λs1 = 0.

Furthermore, the value of human capital P1(H) in (34) is positive only for sufficiently

high levels of health:

H > Hmin = (λs1ls)
1
ξs ≥ 0.
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Hence, the model predicts a threshold health level under which agents are willing to pay

less than their total financial wealth to ward off certain death. We note further that the

shadow price of health p1(H) is monotone increasing and concave, such that healthier

agents face lower sickness risks, and thus value more highly their health capital that is

destroyed at death. This property provides a natural background for the quality of life

adjustment in life value calculations (QALY).

In addition, sufficient health H > Hmin, and curvature ξs > 1 jointly imply that the

value of life is increasing in the order-zero marginal value of health B. Using (11) reveals

that the latter is increasing in the marginal income value of health β, whereas it decreases

in the interest rate r, as well as the deterministic and stochastic depreciation δ, φλs0.

Hence, a higher health gradient in labor income, and/or lower discount, or depreciation

rates all contribute to increasing the shadow price of the health capital, and therefore the

Gunpoint value of life.

Interestingly, the shadow value of the health stock P1(H) in (34), and therefore the

value of life vg in (32) are both independent of the attitudes towards death risk γm

and of the endogenous components in the mortality intensity (λm1, ξm). Consequently,

neither aversion to death risk nor the shadow value of health attributed to its ability to

ward off death determine the value of life. This result stems from the way the latter is

evaluated. Because the outcome of death is certain when life is evaluated at gunpoint,

both the attitudes towards death risk and the ability to marginally alter exposure to

that risk become irrelevant. Indeed, this element could already be inferred from our

previous discussion of equations (29), and (30) which showed that the willingness to pay

v(W,H, λ∗m0) is converging to N1(W,H) as the increment in exogenous death risk λ∗m0

becomes large. The willingness to pay to avert a finite exogenous death risk increase thus

converges to the Gunpoint Value of Life as death becomes certain.

Unlike the WTP v(W,H, λm0) however, the Gunpoint value is independent of the

elasticity of inter-temporal substitution ε. This again stems from the way vg(W,H) is

computed, i.e. as a willingness to pay to avert certain death regardless of how death

occurs. Put differently, the specific mechanism – be it through increases in λ∗m0 or not

– is irrelevant, only the outcome is. Since the elasticity of inter-temporal substitution

was identified as the key driver for the effects of the exogenous death intensity on life

valuation, the EIS is irrelevant as well in the Gunpoint value.
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3.3 Value of a Statistical Life

3.3.1 Permanent infinitesimal changes in death intensity

From standard definitions, the Value of a Statistical Life is the willingness to pay to avoid

an increase in death risk ∆, divided by the latter. Since the WTP v(W,H, λ∗m0) = 0 for

∆ = 0, the VSL is thus equal to a slope through the origin when the WTP is plotted

against the increment. As ∆ falls towards zero, this slope converges to the marginal

willingness to pay ∂v(W,H, λ∗m0)/∂λ∗m0, evaluated at λ∗m0 = λm0, which corresponds to

the theoretical measure of the VSL. Moreover, as is well known, the VSL is also equal to

the marginal rate of substitution (MRS) between the probability of life and wealth (e.g.

Aldy and Smyth, 2014; Andersson and Treich, 2011; Bellavance et al., 2009). Using the

value function V (W,H, λm0), the VSL can thus also be computed as the (negative of) the

MRS between λm0, and W . Both approaches yield the following expression for the VSL.

Theorem 4 (value of statistical life) Assume that the regularity conditions (40) in

Appendix A are verified. Then, up to a first order approximation, the Value of a Statistical

Life is:

vs(W,H, λm0) = lim
∆→0

v(W,H, λ∗m0)

∆
=
∂v(W,H, λ∗m0)

∂λ∗m0

∣∣∣∣
∆=0

,

=
−Vλm0(W,H, λm0)

VW (W,H, λm0)
,

=
−Θ′(λm0)

Θ(λm0)
N1(W,H) + λm1H

−ξml′m(λm0)N0(W,H). (35)

First, as explained earlier, the marginal value of total wealth Θ(λm0) is a decreasing

function for all levels of EIS. It follows that the VSL is an increasing function of first-

order net total wealth N1(W,H). However, the marginal effects of λm0 on the endogenous

death risk factor lm depends on the elasticity of inter-temporal substitution. The VSL

is consequently lower (l′m(λm0) < 0) when the agent’s preferences are sufficiently elastic

with respect to time (i.e. ε > 1) and higher otherwise. Finally, unit elasticity again

entails that Θ′(λm0) = l′m(λm0) = 0 and therefore that vs(W,H, λm0) = 0.

19



3.3.2 Finite changes per time period in death intensity

The previous calculations of the VSL (35) featured permanent infinitesimal changes in the

death intensity. In the spirit of the empirical VSL literature, the value of a statistical life

can also be computed as the maximal willingness to pay to avoid an exogenous increase

∆ in the probability of death over a given time interval (e.g. a change ∆ = 0.1% per one

year period), divided by ∆. This calculation involves two steps. First, we compute the

new value of the endowed intensity λ∗m0(H,∆, T ) corresponding to a change in death risk

∆ occurring over a duration of T . This calculation reveals the following result.

Lemma 1 A higher likelihood of death of ∆ per time interval of s ∈ [0, T ] corresponds

to a permanent increase in the endowed intensity to λ∗m0(H,∆, T ) > λm0 given by:

λ∗m0(H,∆, T ) =
−1

T
log

[
e−λm0T − ∆

1− λm1k(H,T )

]
, (36)

where,

k(H,T ) = H−ξm
(
eψT − 1

ψ

)
≥ 0,

ψ = ξm

[
δ − (αB)

α
1−α

]
+ λs0

[
(1− φ)−ξm − 1

]
≥ 0.

Second, given λ∗m0(H,∆, T ) in (36), the value of a statistical life associated with a

finite increase in death risk of ∆ over interval s ∈ [0, T ] is:

vs(W,H, λ
∗
m0(H,∆, T )) =

v(W,H, (λ∗m0(H,∆, T ))

∆
, (37)

where v(W,H, λ∗m0(H,∆, T )) is the willingness to pay (28), evaluated at λ∗m0(H,∆, T ).

4 Structural estimation

4.1 Econometric model

The econometric model that we rely upon assumes that agents are heterogeneous with re-

spect to their health, and wealth statuses, and are homogeneous with respect to the distri-

butional, revenue, and preference parameters. To structurally estimate the latter, we use

the quadri-variate closed-form expressions for the optimal rules (20), and (21), to which
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we append the exogenous income equation (5). Specifically, let Yj = [cj − a, πj, xj, Ij]′

denote the vector of optimal excess consumption, portfolio, health insurance, and health

spending for agents j = 1, 2, . . . , n. The estimated optimal rules are:

Yj = B(Hj) [N0(Wj, Hj), P0(Hj)]
′ + uj, (38)

where the uj’s are (potentially correlated) Gaussian error terms. The value of human

capital P0(Hj) is given in (22), and the net total wealth N0(Wj, Hj) is given in (23),

where the price of health B is implicitly given in (11). The health-dependent loadings

matrix B(Hj) is restricted as follows:

Yj N0(Wj, Hj) P0(Hj)

cj − a A− λm1A (1− ε)lmH−ξmj −λs1A lsH−ξsj

πj θ/(γσS) −λs1θ/(γσS)lsH
−ξs
j

xj −λm1χ(ξm)(1− 1/γs)lmH
−ξm
j φ− λs1χ(ξs − 1)lsH

−ξs
j

Ij λm1ξmK/(1− α)lmH
−ξm
j K + λs1(ξs − 1)K/(1− α)lsH

−ξs
j

(39)

where the marginal propensity to consume A is given in (13), the endogenous morbidity

and mortality adjustments ls, lm are obtained in (15), (16), with χ(x) given in (18), and K

is given in (12). To ensure theoretical consistency, we estimate the structural parameters

in (38)–(39) imposing the full set of regularity conditions (40) in Appendix A. In light of

the strong nonlinearities not all the deep parameters can be identified, and a subset are

calibrated. We resort to a two-stage, iterative Maximum Likelihood procedure. In stage

one, we fix the curvature parameters in the Poisson intensity functions ξk, for k = m, s,

then estimate the remaining deep parameters. In stage two, we condition on the latter

to re-estimate the ξk. We iterate on this procedure until a fixed point is reached.

4.2 Data

We use a sample of 8,378 individuals taken from the 2013 wave of the Institute for Social

Research’s Panel Study of Income Dynamics (PSID). The data construction is detailed

in Appendix G. We proxy the health variables through the polytomous self-reported

health status that is linearly converted to numeric values from 1 to 4. The financial
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wealth comprises risky, and riskless assets. Using the method in Skinner (1987), we

infer the unreported total consumption by extrapolating the food, transportation, and

utility expenses reported in the PSID. Finally, health expenditures and insurance are

respectively the out-of-pocket spending, and premia paid by agents. All nominal values

are scaled by 10−6 for the estimation.

Tables 1, and 2 present descriptive statistics, as well as mean values (in $) for the

main variables of interest, per health status, and per wealth quintiles. Table 2.a shows

that financial wealth remains very low for the first three quintiles (see also Hubbard et al.,

1994, 1995; Skinner, 2007, for similar evidence). Moreover no clear effects of the health

status on wealth levels can be deduced. The level of consumption in panel b is clearly

increasing in financial wealth. However, the effects of health remain ambiguous, except

for the least healthy who witness a significant drop in consumption.

In panel c, stock holdings remain very low for all but the fourth, and fifth quintiles,

illustrating the non-participation puzzle (e.g. Friend and Blume, 1975; Mankiw and

Zeldes, 1991). Again, a clear positive wealth gradient is observed, whereas health effects

are weakly positive. The health insurance expenses in panel d are modest relative to

consumption. They are increasing in wealth, and devoid of clear health gradients. Finally,

health spending in panel e is of the same order of magnitude as insurance. It is strongly

increasing in wealth, and also sharply decreasing in health status.

5 Results

5.1 Structural parameters

Table 3 reports the calibrated (with subscript c), and estimated (standard errors in

parentheses) deep parameters. Overall, the latter are precisely estimated, and are close

to other estimates for this type of model (e.g. Hugonnier et al., 2013, 2017).

First, the health law of motion parameters in panel a are indicative of significant

diminishing returns in adjusting health status (α = 0.70). Although depreciation is

relatively low (δ = 1.09%), additional depletion brought upon by sickness is consequential

(φ = 1.36%). Second, the sickness and death intensities parameters in panel c are con-

sistent with endogeneous morbidity, and mortality (λk1, ξk 6= 0 for k = s,m). Moreover,

high convexity parameters (ξk > 1) indicate strongly diminishing returns in adjusting
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exposure to death and sickness risks. Furthermore, mortality risk is more difficult to

adjust than morbidity risk (λs1, ξs > λm1, ξm). Finally, a large calibrated value for η

entails that sickness risks increase very steeply as health falls.

Third, the income parameters in panel c are consistent with a significant positive

effect of health on labor income (β = 0.0095), as well as a realistic calibrated value

for base income (y × 106 = 12.2 K$).8 The returns process parameters (µ, r, σS) are

calibrated at standard values. Finally, the preference parameters in panel d indicate

realistic aversion to financial risk (γ = 3.52), and to mortality risk, where the latter is

less than one as required (γm = 0.29), as well as a high calibrated value for aversion to

morbidity risk (γs = 7.4). Importantly, as for other cross-sectional estimates using survey

data (Gruber, 2013; Hugonnier et al., 2017), the elasticity of inter-temporal substitution

is larger than one (ε = 1.67). Observe that the inverse of the EIS is nonetheless larger

than the mortality risk aversion (1/ε = 0.60 > 0.29 = γm), an issue to which we will

return shortly. The minimal consumption level is realistic, and larger than base income

(a× 106 = 14.4 K$).

5.2 Estimated valuations

Gunpoint Value Using the point estimates of the deep parameters, Table 4 reports the

Gunpoint values vg(W,H) in (32), by wealth, and health status. The GPV are ranging

between 88 K$, and 729 K$. Contrasting these valuations with the low observed financial

wealth in Table 2.a, reveals that the bulk of the Gunpoint value captures human wealth,

with (y − a)/r + P1(H), ranging between 88 K$ (Poor health), and 607 K$ (Excellent

health), and corresponding to 4 to 12 times annual revenues. These human capital are

realistic, yet somewhat lower than other HK estimates.9 Part of the difference relates

to the absence of subsistence consumption in human capital models (e.g. Rosen, 1988;

Huggett and Kaplan, 2016). As discussed earlier, the agents need to maintain subsistence

consumption ct ≥ a for survival. Consequently, the capitalized value (y − a)/r they are

willing to pay to survive is net of subsistence. Since the latter is higher than base

income (a = .0146 > .0122 = y), the human capital value is lowered by −50 K$. Another

8For example, U.S. Census Bureau (2017) poverty thresholds for single-agent households under age
65 were 12.5 K$ in 2016.

9For example, Huggett and Kaplan (2016, benchmark case, Fig. 7.a, p. 38) find human capital starting
at about 300 K$ at age 20, peaking at less than 900 K$ at age 45, and falling steadily towards zero
afterwards.
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explanation relates to the absence of endogenous morbidity risk in alternative HK models.

Indeed, the adjustment for exposure to sickness P0(H)−P1(H) lowers human capital by

−1.7 K$ (Excellent health) and as much as −26 K$ (Poor health).

Second, the Gunpoint value is increasing in both wealth, and health. Unsurprisingly,

rich agents are thus willing to pay more to protect their own life, since all financial wealth

is paid out in the absence of a bequest motive. The higher GPV for healthy agents reflects

their higher human wealth. From the health capital P1(H) in (34), healthy agents have

a lower exposure to sickness risks λs1H
−ξs , as well as more human capital HB at stake,

and are thus willing to spend more in (33) in order to remain alive.

Value of Statistical Life Again relying on the estimated structural parameters, Ta-

ble 5 reports the Values of Statistical Life by health, and wealth statuses, where the

VSL is estimated from vs(W,H, λm0) in (35). First, the calculated values are between

2.06 MM$, and 15.82 MM$, and are well within the ranges usually found in the empirical

VSL literature.10 Overall, the concordance of these values with previous findings provides

additional evidence that our structural estimates are well grounded.

Second, the VSL is increasing in both wealth, and especially health. Positive wealth

gradients have been identified elsewhere in the literature (Bellavance et al., 2009; Ander-

sson and Treich, 2011; Adler et al., 2014) whereby diminishing marginal value of wealth

and higher financial values at stake both imply that richer agents are willing to pay more

to improve survival probabilities. The literature has been more ambivalent with respect

to the health effect (e.g. Andersson and Treich, 2011; Robinson and Hammitt, 2016;

Murphy and Topel, 2006). On the one hand better health increases the value of life that

is at stake, on the other hand, healthier agents face lower death risks, and are willing

to pay less to attain further improvements (or prevent deteriorations). Our estimates

unambiguously indicate that the former effect is dominant and that better health raises

the VSL.

10A meta-analysis by Bellavance et al. (2009, Tab. 6, p. 452) finds mean values of 6.2 MM$ (2000
base year, corresponding to 8.6 MM$, 2016 value). Survey evidence by Doucouliagos et al. (2014) ranges
between 6 MM$, and 10 MM$. Robinson and Hammitt (2016) report values ranging between 4.2, and
13.7 MM$. Finally, guidance values published by the U.S. Department of Transportation were 9.6 MM$ in
2016 (U.S. Department of Transportation, 2016), whereas the Environmental Protection Agency relies on
central estimates of 7.4 MM$ (2006$), corresponding to 8.8 MM$ in 2016 (U.S. Environmental Protection
Agency, 2017).
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Understanding the differences between VSL and GPV Our estimated values

show that the Statistical Life value is much larger than the Gunpoint Value of Life. To

understand these differences, it is useful to characterize the willingness to pay in function

of the change in death risk, and to contrast what the two values are effectively measuring.

Figure 1: Estimated willingness to pay, Statistical Life and Gunpoint Values
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Notes: At estimated parameter values, for third quintile of wealth and Good health levels.

v(W,H, λ∗m0) in blue is the maximum willingness to pay to avoid an increase of ∆ in exogenous

death intensity λm0; vg(W,H) in red is the Gunpoint value of life; vs(W,H, λm0) is the Value

of statistical life, and the slope of the yellow tangent evaluated at λm0. In MM$.

Figure 1 plots the estimated willingness to pay v(W,H, λ∗m0) to avoid an increment

∆ in function of the death intensity λ∗m0 = λm0 + ∆. These valuations are calculated

from (28) at the estimated parameters, and relying on the third wealth quintile, and Good

health status in Table 2.a (W = 1, 802$× 10−6, H = 2.50). First, the estimated WTP in

blue is an increasing, and concave function that equals zero at λ∗m0 = λm0 = 0.0244, is
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negative11 for ∆ < 0, and positive for positive increments. The pronounced curvature of

the WTP is consistent with standard economic intuition of diminishing marginal valuation

of exposure to death (e.g. Philipson et al., 2010; Córdoba and Ripoll, 2016). Concavity

of the WTP is also expected when the reciprocal of the EIS is larger than mortality risk

aversion (as was found in Table 3.c) in other life valuation literature using Non-Expected

Utility (see Córdoba and Ripoll, 2016, for discussion).

Second, we saw from Corollary 1 that for ε > 1, the limit of the willingness to pay

when death becomes certain – i.e. when λ∗m0 tends to infinity – is the morbidity-adjusted

net total wealth N1(W,H). From Theorem 3, this limiting value is also the gunpoint

value vg(W,H) plotted in red. Third, as explained in Theorem 4, the VSL vs(W,H, λm0)

is the value of the slope of the yellow tangent of v(W,H, λ∗m0) evaluated at ∆ = 0 or,

equivalently, the value of the yellow tangent evaluated as λ∗m0 = 1+λm0. The pronounced

curvature of the WTP in Figure 1 is informative as to why the VSL is much larger than

the Gunpoint value (7.88 MM$ vs 359 K$). Put differently, the linear extrapolation of

marginal values that is relied upon in the VSL calculation overstates the willingness to

protect one’s own life when the WTP is very concave in the death risk increment.

Perhaps more fundamentally, as famously pointed out by Schelling (1968), and widely

recognized by the literature, the VSL does not measure a value ascribed to a particular

human life, but instead gauges the aggregate willingness to pay for infinitesimal changes in

the risk of dying indiscriminately affecting entire populations.12 Conversely, the Gunpoint

value measures the willingness to pay to avoid a large change in death risk (i.e. life versus

certain death), and affecting a single individual. There is therefore no ex-ante reason why

the Statistical Life, and Gunpoint values should be equal.

Indeed, Pratt and Zeckhauser (1996) argue that concentrating the costs, and benefits

of death risk reduction leads to two opposing effects on valuation. On the one hand,

the dead anyway effect leads to higher payments on identified (i.e. small groups facing

11A negative willingness to pay to avoid a change to λ∗m0 < λm0 thus corresponds to a positive WTP
to attain a lower death intensity.

12In his opening remarks, Schelling (1968, p. 113) writes

“This is a treacherous topic and I must choose a nondescriptive title [The life you save may
be your own] to avoid initial misunderstanding. It’s not the worth of a human life that I
shall discuss, but of ‘life saving’, of preventing death. And it’s not a particular death, but
a statistical death. What it is worth to reduce the probability of death – the statistical
frequency of death – within some identifiable group of people, none of whom expects to die
except eventually. ”
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large risks), rather than statistical (i.e. large groups facing small risks) lives. In the

limit, they contend that an individual might be willing to pay infinite amounts to save

his own life from certain death. On the other hand, the wealth or high payment effect has

an opposite impact. Since resources are limited, the marginal utility of wealth increases

with each subsequent payment to avoid increases in risk, thereby reducing the WTP as

risk increases.13 Although the net effect remains uncertain, Pratt and Zeckhauser (1996,

Fig. 2, p. 754) argue that the wealth effect is dominant for larger changes in death risk,

i.e. for those cases that naturally extend to our Gunpoint Value.

Their conjecture is warranted in our calculations. When faced with certain death, an

individual is willing to pay much less than what can be inferred from the VSL. Indeed,

while total financial wealth, plus the value of the human capital, net of subsistence costs,

are paid out in the Gunpoint value, these resources are limited, and much less than what

society might collectively be willing to pay to save one unidentified life.

As a final note, two caveats of our approach are worth mentioning. A first limitation

is the absence of bequest motives. This omission is related to the technical difficulty

in solving the model when bequeathed wealth is optimally chosen. Although it remains

unclear how our results would be affected, we can however conjecture that a likely effect

would be to reduce the GPV even further. Indeed, warm glow effects of bequest would

attenuate the cost of dying, and consequently also the WTP to avert death. Moreover,

bequeathed wealth is illiquid, to the extent that it is set aside for surviving heirs, and not

to ensure one’s own survival. Without affecting human capital, the amount of disposable

financial resources that can be pledged in a money-or-death threat would therefore be

reduced, and consequently so would the GPV.

A second limitation is the absence of aging in our valuation. A fair treatment would

involve time varying parameters, which are made possible in the original Hugonnier et

al. (2013, Appendix B) paper, yet are technically more involved. Although a complete

derivation is again beyond the scope of this paper, we can conjecture that aging should

also reduce the GPV. Indeed, biological limits to life expectancy would generate opti-

mal dis-saving of financial wealth, lowering even further the Gunpoint value for elders.

Moreover, as mentioned earlier, the marginal Q of health, B, is a declining function of

13Pratt and Zeckhauser (1996, p. 753) point out that whereas a community close to a toxic waste
dump could collectively pay $1 million to reduce the associated mortality risk by 10%, it is unlikely that
someone would be willing to pay that same amount when confronted with that entire risk.
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the health depreciation parameters (which would likely increase in age) and an increasing

function of health gradient of income (which should fall in age). A lower value of human

capital for elders would then lead to less resources being paid out to survive a credible

death threat.

6 Conclusion

Computing the monetary value of a human being has generated a profound, and continued

interest, with early records dating back to the late XVIIth century. The two main

valuation frameworks have centered on the marginal rate of substitution between the

probability of living, and wealth (VSL), and on the human capital value of a person (HK).

The VSL is appropriate for the valuation of unidentified lives, i.e. a collective willingness

to pay to avert diffuse risks of death among a given population, but its usefulness for

a WTP to avert a concentrated death risk affecting a single person has been debated.

The HK is useful to measure the net present value of the labor income stream that is

foregone upon death, but measurement issues related to non-workers, and appropriate

rate of discounting limit its relevance.

We have proposed a third method based on the maximum an individual would be

willing to pay to avert certain death, with that amount being referred to as the Gunpoint

Value of Life. Whereas it also relies on the Hicksian Equivalent Variation, it gauges

an intrinsically different WTP than the VSL, i.e. a value a person would ascribe to

his own, rather than someone’s life in a credible money-or-life situation. Similar to

HK frameworks, this GPV also encompasses a human wealth component. However this

human value relates to the value of the health capital that is destroyed upon death. As

such it gauges the services procured by health, i.e. the capacity to work (or equivalently

to procure utility flows), to produce future health, and to ward off sickness, all of which

are endogenously determined in our model. Moreover, we directly addressed the issue of

what discounting process to use by fully internalizing the effects of health on exposure to

death risk.

Our structural estimation of the closed-form expressions for the GPV, and for the VSL

has highlighted a long-suspected feature of the WTP to avert death risks, i.e. that it is

strongly concave in the latter. Consequently, the VSL – which extrapolates the marginal
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WTP – leads to much larger values of life than the GPV – which computes the limiting

values of the WTP corresponding to certain death. These discrepancies where shown to

be directly linked to the diminishing marginal value of additional expected life, as well as

to the finite capacity to pay to save oneself, compared to the collective capacity to pay

to save someone.

The initial question that is implicit in the title of this paper is which of the GPV or the

VSL should be relied upon to measure the value of a human life? To the extent that they

measure different objects, we contend that both should be used. Put differently, and as

hinted by Schelling (1968) the VSL, and GPV are complements, rather than substitutes,

and their relevance should depend on the underlying motivation for computing a life

value.

All in all, the VSL is more appropriate in issues involving collective choices that involve

changes in death probabilities affecting large subsets of the population, and for which

society is the ultimate payer of the associated costs. Well-known examples identified in the

literature include general safety measures with respect to transportation, or public health.

The GPV is inappropriate for such cases in that it gauges what someone would be willing

to pay to survive, not what a society is collectively willing to pay to indiscriminately save

someone in the group. The GPV on the other hand should be relied upon in situations

where the risk of dying concerns a single individual. One such application could be the

continued life support decisions, wrongful death litigation, or life insurance where the

GPV would gauge the value of life ascribed by its main beneficiary, with full adjustments

for his health, financial, and net total wealth statuses.

Future research should address some of the important elements that are omitted

from our framework. In particular, we conjectured – but did not prove – that including

bequests could lower the GPV by reducing the cost of dying (and therefore the WTP

to avert it) through a warm glow effect, as well as by rendering the bequeathed part

of financial resources illiquid. Moreover, we did not include the aging process in our

valuations, although the original Hugonnier et al. (2013) model is fully amenable to such

time variation. We again conjectured that aging would likely reduce the GPV through

biological limits to life expectancy, and ensuing effects on optimal dis-savings, as well as

through age-increasing depreciation of health and declining capacity to work. Finally, our

Gunpoint Value of Life is intrinsically individualistic. The genuine costs of one’s death
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that are associated with grief or financial hardship, and that are borne by surviving family

or friends are completely abstracted from in our analysis.
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A Regularity conditions

The model of Hugonnier et al. (2013) is solved and estimated under the following transver-

sality conditions:

β < (r + δ + φλs0)
1
α ,

0 < A(λm0)−max

(
0, r − λm0

1− γm
+ θ2/γ

)
,

0 < min

(
λm0

1− γm
, r

)
− F (1− ξs),

0 < A(λm0)−max

(
0, r − λm0

1− γm
+ θ2/γ

)
− F (−ξm),

(40)

where A is given in (13), and F (x) in (17).

B Proof of Theorem 2

Following Hugonnier et al. (2013), we can define Lk(H) = H−ξk lk, for k = s,m, and set

λk1 = ελ̄k1 for some strictly positive constants λ̄k1, and for k = m, s, such that the value

function in (19) can be written as:

V (W,H, λm0, ε) = Θ(λm0)
[
N0(W,H)− ελ̄s1Ls(H)P0(H)

]
−Θ(λm0)ελ̄m1Lm(H,λm0)N0(W,H),

= Θ(λm0)
[
N1(W,H, ε)− ελ̄m1Lm(H, λm0)N0(W,H)

]
,

(41)

where the first-order total wealth N1(W,H, ε) is implicitly defined. The indirect util-

ity (41) is obtained by Hugonnier et al. (2013) through a first-order Taylor expansion of

the agent’s problem around small deviations ε ≈ 0. By a similar reasoning, the first-order

approximation to the Hicksian compensating value v(ε) = v(W,H, λ∗m0, ε) ≥ 0 in (27) to

prevent any increase in the endowed death intensity λ∗m0 > λm0 is given as:

0 = V (W − v(ε), H, λm0, ε)− V (W,H, λ∗m0, ε)

= ∇V (W,H, λ∗m0, ε)

≈ ∇V (W,H, λ∗m0, 0) + ε∇Vε(W,H, λ∗m0, 0).
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Straightforward calculations using the indirect utility (41) reveal that:

∇V (W,H, λ∗m0, 0) = V (W − v(0), H, λm0, 0)− V (W,H, λ∗m0, 0)

= −Θv(0) + (Θ−Θ∗)N0(W,H)

where Θ = Θ(λm0), and Θ∗ = Θ(λ∗m0) are given in (14). Setting ∇V (W,H, λ∗m0, 0) = 0

uniquely solves for v(0) as:

v(0) =

(
1− Θ∗

Θ

)
N0(W,H). (42)

Similarly, we obtain:

∇Vε(W,H, λ∗m0, 0) =− VW (W − v(0), H, λm0, 0)v′(0)

+ Vε(W − v(0), H, λm0, 0)− Vε(W,H, λ∗m0, 0),

=−Θv′(0) + λ̄m1ΘLm(H)v(0)

− λ̄m1 [ΘLm(H)−Θ∗L∗m(H)]N0(W,H)

− λ̄s1 [Θ−Θ∗]Ls(H)P0(H),

where Lm(H) = Lm(H,λm0), and L∗m(H) = Lm(H,λ∗m0) are given in (16). Again setting

∇Vε(W,H, λ∗m0, 0) = 0 uniquely solves for v′(0) as:

v′(0) = −λ̄m1
Θ∗

Θ
[Lm(H)− L∗m(H)]N0(W,H)− λ̄s1

[
1− Θ∗

Θ

]
Ls(H)P0(H) (43)

The corresponding Hicksian value v(ε) obtains by substituting the solutions (42) and

(43) in the first-order expansion of the compensating value:

v(ε) ≈v(0) + εv′(0)

=

[
1− Θ∗

Θ

] [
N0(W,H)− ελ̄s1Ls(H)P0(H)

]
− ελ̄m1

Θ∗

Θ
[Lm(H)− L∗m(H)]N0(W,H)

=

[
1− Θ∗

Θ

]
N1(W,H, ε)− ελ̄m1

Θ∗

Θ
[Lm(H)− L∗m(H)]N0(W,H).

Substituting back λk1 = ελ̄k1, and using total wealth (24) yields (28). �
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C Proof of Corollary 1

When the agent’s preferences are sufficiently elastic with respect to time (i.e. ε > 1), the

marginal propensity to consume A(λm0) in (13) is a linear increasing function, such that

l∗m < lm is decreasing and convex. Since Θ(λm0) was found to be increasing and convex

for all ε it follows that

lim
λ∗m0→+∞

v(W,H, λ∗m0) = N1(W,H), if ε > 1,

Conversely, when the elasticity is low, i.e. ε ∈ (0, 1), the marginal propensity to

consume A(λm0) is a linear decreasing function. To maintain non-negativity of the MPC,

the maximal admissible increase in the death intensity is:

λ̄m0 = (1− γm)

[(
ε

1− ε

)
ρ+

(
r +

θ2

2γ

)]
.

Using λ̄m0 in the regularity conditions (40) simplifies to:

ερ

1− ε
≥ θ2

2γ
+ F (−ξm),

under which condition, it is then straightforward to show that Θ(λ̄m0) = 0, whereas

lm(λ̄m0) is finite, such that:

v(W,H, λ̄m0) = N1(W,H), if ε ∈ (0, 1)

as stated. �

D Proof of Theorem 3

Again by a similar reasoning, the first-order approximation to gunpoint value of life

vg(ε) = vg(W,H, ε) in (31) is implicitly given as:

0 = V (W − vg(ε), H, λm0, ε)

≈ V (W − vg(0), H, λm0, 0) + εVε(W − vg(0), H, λm0, 0).
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Straightforward calculation indicate that:

V (W − vg(0), H, λm0, 0) = Θ [N0(W,H)− vg(0)]

whereas,

Vε(W−vg(0), H, λm0, 0) = Θ
[
−v′g(0)− λ̄s1Ls(H)P0(H)− λ̄m1Lm(H) (N0(W,H)− vg(0))

]
.

Again equating each terms to zero uniquely solves for vg(0), v′g(0) and reveals that:

vg(ε) ≈ vg(0) + εv′g(0)

= N0(W,H)− ελ̄s1Ls(H)P0(H).

Substituting back λs1 = ελ̄s1, and using total wealth (24) yields (32). �

E Proof of Theorem 4

Using a similar reasoning and standard principles, the VSL can be calculated as the

negative of the MRS between death intensity λm0, and wealth:

vs(W,H, λm0, ε) =
−Vλm0(W,H, λm0, ε)

VW (W,H, λm0, ε)

≈ vs(W,H, λm0, 0) + ε
∂vs(W,H, λm0, ε)

∂ε

∣∣∣∣
ε=0

,

where

vs(W,H, λm0, 0) =
N0(W,H)Θ′(λm0)

Θ(λm0)

∂vs(W,H, λm0, ε)

∂ε

∣∣∣∣
ε=0

=
−λ̄s1BHLs(H)Θ′(λm0)

Θ(λm0)
− λ̄m1N0(W,H)

∂Lm(H, λm0)

∂λm0

.

Re-arranging terms, using the definition of N1(W,H) in (24), and substituting for λk1 =

ελ̄k1 yields the VSL in (35). Note that the alternative calculation through the marginal
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willingness to pay

vs(W,H, λm0, ε) =
∂v(W,H, λ∗m0, ε)

∂λ∗m0

∣∣∣∣
∆=0

yields the same value of statistical life (35). �

F Proof of Lemma 1

A higher likelihood of death of ∆ over a time interval of s ∈ [0, T ] corresponds to an

increase in the endowed intensity to λ∗m0(∆, H) > λm0:

Pr [Tm ≤ T | λ∗m0] = Pr [Tm ≤ T | λm0] + ∆,

= 1− E
[
e−

∫ T
0 λ∗m(∆,Hs)ds

]
,

where we have set λ∗m(∆, H) = λ∗m0(∆, H) + λm1H
−ξm in (3). Solving for λ∗m0 through a

first-order expansion around benchmark λk1 = 0, k = m, s reveals that the latter is as:

λ∗m0(∆, H) =
−1

T
log

[
e−λm0T − ∆

1− λm1k(H)

]
,

where,

k(H) = E

∫ T

0

H−ξms ds = H−ξm
(
eψT − 1

ψ

)
≥ 0,

ψ = ξm

[
δ − (αB)

α
1−α

]
+ λs0

[
(1− φ)−ξm − 1

]
≥ 0.

as stated. �

G Data

The data construction follows the procedure in Hugonnier et al. (2013). We rely on a

sample of 8,378 U.S. individuals obtained by using the 2013 wave of the Institute for Social

Research’s Panel Study of Income Dynamics (PSID, http://psidonline.isr.umich.edu/).

All nominal variables in per-capita values (i.e., household values divided by household
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size), and scaled by 10−6 for the estimation. The agents’ wealth and health which are

constructed as follows:

Health Hj Values of 1.0 (Poor health), 1.75 (Fair), 2.5 (Good), 3.25 (Very good) and

4.0 (Excellent) are ascribed to the self-reported health variable of the household

head.

Wealth Wj Financial wealth is defined as risky (i.e. stocks in publicly held corporations,

mutual funds, investment trusts, private annuities, IRA’s or pension plans) plus

riskless (i.e. checking accounts plus bonds plus remaining IRA’s and pension assets)

assets.

The dependent variables are the observed portfolios, consumption, health expenditure

and health insurance, and are constructed as follows:

Portfolio πj Money value of financial wealth held in risky assets.

Consumption cj Inferred from the food, utility and transportation expenditures that

are recorded in PSID, using the Skinner (1987) method with the updated shares of

Guo (2010).

Health expenditures Ij Out-of-pocket spending on hospital, nursing home, doctor,

outpatient surgery, dental expenditures, prescriptions in-home medical care.

Health insurance xj Spending on health insurance premium.
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H Tables

Table 1: PSID data statistics

Mean Std. dev. Min Max

Health (H) 2.58 0.80 1 4

Wealth (W ) 38 685 122 024 0 1 430 000

Consumption (c) 9 835 11 799 1.047 335 781

Risky holdings (π) 20 636 81 741 0 1 367 500

Insurance (x) 247 718 0 17 754

Health investment (I ) 721 2 586 0 107 438

Income (Y ) 21 838 37 063 0 1 597 869

Notes: Statistics in 2013 $ for PSID data used in estimation (8 378 observations). Scaling for

self-reported health is 1.0 (Poor), 1.75 (Fair), 2.50 (Good), 3.25 (Very good), and 4.0 (Excellent).
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Table 2: PSID data statistics (cont’d)

Wealth quintiles

Health Hj 1 2 3 4 5

a. Wealth Wj ($)

Poor 1.00 0 139 2 063 11 831 152 151

Fair 1.75 0 145 1 741 12 027 123 083

Good 2.50 0 168 1 802 11 908 120 467

Very good 3.25 0 199 1 823 12 197 118 738

Excellent 4.00 0 192 1 823 12 099 122 135

b. Consumption cj ($)

Poor 1.00 3 281 4 906 6 558 10 052 7 752

Fair 1.75 4 095 6 888 8 795 11 196 13 368

Good 2.50 5 086 6 526 9 745 11 269 13 336

Very good 3.25 5 989 7 517 10 181 11 131 13 626

Excellent 4.00 5 276 6 897 10 002 12 099 14 628

c. Stocks πj ($)

Poor 1.00 0 0 0 725 46 497

Fair 1.75 0 5 279 2 309 76 721

Good 2.50 0 1 268 4 320 55 379

Very good 3.25 0 5 192 4 756 68 768

Excellent 4.00 0 0 334 5 801 90 147

d. Insurance xj ($)

Poor 1.00 165 191 503 723 856

Fair 1.75 181 196 497 775 1 095

Good 2.50 206 219 401 564 852

Very good 3.25 190 284 313 522 797

Excellent 4.00 203 254 366 429 807

e. Investment Ij ($)

Poor 1.00 549 552 2 341 2 936 6 003

Fair 1.75 400 468 968 621 1 250

Good 2.50 243 238 383 500 962

Very good 3.25 276 226 275 435 596

Excellent 4.00 151 192 230 307 451

Notes: Statistics in 2013 $ for PSID data used in estimation. Means per quintiles of wealth,

and per health status
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Table 3: Estimated and calibrated structural parameter values

Parameter Value Parameter Value

a. Law of motion health (1)

α 0.7045 δ 0.0109

(0.1799) (0.0048)

φ 0.0136c

b. Sickness and death intensities (2), (3)

λs0 0.0316 λs1 0.0088

(0.0152) (0.0042)

ξs 2.9802 η 50c

(1.0262)

λm0 0.0244 λm1 0.0045

(0.0087) (0.0022)

ξm 1.0686

(0.4497)

c. Wealth, and income (4), (5)

y 0.0122c β 0.0095

(0.0045)

µ 0.108c r 0.048c

σS 0.20c

d. Preferences (6), (8)

γ 3.5242 ε 1.6699

(1.3316) (0.5911)

a 0.0146 γm 0.2862

(0.0037) (0.1212)

γs 7.4c ρ 0.05c

Notes: Estimated structural parameters (standard errors in parentheses); c: calibrated

parameters. Econometric model (38)–(39) estimated by iterative 2-stages ML, subject to the

regularity conditions (40).
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Table 4: Estimated Gunpoint Value of Life ($)

Health level Wealth quintile

1 2 3 4 5

Poor 87 800 87 900 89 800 99 600 239 900

Fair 229 200 229 300 230 900 241 200 352 300

Good 357 300 357 400 359 100 369 200 477 700

Very good 482 600 482 800 484 400 494 800 601 400

Excellent 607 100 607 300 608 900 619 200 729 200

Notes: At estimated parameter values, using vg(W,H) in (32), multiplied by 1 MM$ to correct

for scaling used in estimation.

Table 5: Estimated Value of Statistical Life ($)

Health level Wealth quintile

1 2 3 4 5

Poor 2 061 200 2 064 400 2 108 600 2 333 000 5 557 100

Fair 5 102 800 5 106 000 5 141 500 5 370 100 7 838 700

Good 7 840 400 7 844 100 7 879 900 8 101 600 10 483 200

Very good 10 515 500 10 519 800 10 555 200 10 781 200 13 102 300

Excellent 13 169 800 13 174 000 13 209 300 13 432 200 15 819 100

Notes: At estimated parameter values, using vs(W,H, λm0) in (35), multiplied by 1 MM$ to

correct for scaling used in estimation.
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Table 6: Estimated Value of Statistical Life for Discrete Changes ($)

Health level Wealth quintile

1 2 3 4 5

Poor 1 494 144 1 496 565 1 530 008 1 699 840 4 139 523

Fair 4 096 371 4 098 962 4 127 538 4 311 633 6 299 301

Good 6 462 782 6 465 821 6 495 384 6 678 266 8 642 695

Very good 8 782 648 8 786 261 8 815 828 9 004 636 10 943 626

Excellent 11 087 366 11 090 873 11 120 661 11 308 341 13 317 979

Notes: For increment ∆ = 0.01, over time interval T = 1. At estimated parameter values,

using vs(W,H, λm0(∆, H)) in (36), and (37), multiplied by 1 MM$ to correct for scaling used

in estimation.
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